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1. Abstract
1.1. Background: Colorectal Cancer (CRC) is a common malig-
nant cancer with a poor prognosis. Liver metastasis is the domi-
nant cause of death in CRC patients, and it often involves changes 
in various gene expression profiling. This study proposed to con-
struct and validate a risk model based on differentially expressed 
genes between the primary and liver metastatic tumors from CRC 
for prognostic prediction.

1.2. Methods: Transcriptomic and clinical data of CRC were 
downloaded from The Cancer Genome Atlas database (TCGA) 
and Gene Expression Omnibus database (GEO). Identification and 
screening of candidate differentially expressed genes (DEGs) be-

tween liver metastatic tissues and corresponding primary tumors 
were conducted by R package “limma” and univariate Cox anal-
ysis in the GSE50760 and TCGA cohort. Last absolute shrinkage 
and selection operator (LASSO) Cox regression was carried out 
to shrink DEGs and develop the risk model. CRC patients from 
the GSE161158 cohort were utilized for validation. Functional en-
richment, CIBERSORT algorithm, and ESTIMATE algorithm for 
further analysis.

1.3. Results: An 8-gene signature risk model, including HPD, 
C8G, CDO1, FGL1, SLC2A2, ALDOB, SPINK4, and ITLN1, was 
developed and classified the CRC patients from TCGA and GEO 
cohorts into high and low-risk groups. The high-risk group has 
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a worse prognosis compared with the low-risk group. The model 
was verified as an independent indicator for prognosis. Moreover, 
tumor immune infiltration analyses demonstrated that monocytes 
(P = 0.006), macrophage M0 (P < 0.001) and macrophage M1 (P 
< 0.001) were enriched in the high-risk group, while plasma cells 
(P = 0.010), T cells CD4 memory resting (P < 0.001) and dendritic 
cells activated (P = 0.006) were increased in the low-risk group. 

1.4. Conclusions: We developed and validated a risk predictive 
model on the DEGs between liver metastases and primary tumor 
of CRC, which can be utilized for the clinical prognostic indicator 
in CRC.

2. Introduction
Colorectal Cancer (CRC), a major malignancy of the digestive 
system, ranks third among malignant cancers in terms of morbidi-
ty worldwide. [1] Approximately 30–50% of patients with primary 
colon cancer relapse and die from metastases, especially for liver 
metastasis. [2] The mechanisms of CRC metastasis have been in-
vestigated for a long time, which are involved in epithelial-mes-
enchymal transition, tumor motion, invasion, proliferation, and 
metabolism. [3] Due to the tumor heterogeneity, there are certain 
differences in the expression profile between the primary and the 
metastatic tumor. The existence of differences in expression leads 
to a series of changes in biological behaviors, and ultimately caus-
es the occurrence of metastasis, which is related to a poor prog-
nosis. 

Meanwhile, given the poor prognosis of CRC, the identification 
of prognostic biomarkers in CRC patients will ultimately facilitate 
appropriate individualized treatments for patients with a high risk 
of tumor progression. Therefore, there is an urgent need to iden-
tify highly robust biomarkers to enable individualized treatment 
decisions, which may then guide drug development and the use of 
combination therapies, targeted therapies, and immunotherapies. 
Therefore, finding prognostic markers is critical for better patient 
management.

In addition, the composition and function of Tumor-Infiltrating 
Immune Cells (TIICs) have potential prognostic performance. CI-
BERSORT is a gene expression-based deconvolution algorithm 
that uses a set of barcode gene expression values to characterize 
immune cell composition. [4] The relative proportion of 22 types 
of infiltrating immune cells in tumors could be inferred by CIBER-
SORT algorithm, and a series of researches have taken advantage 
of this algorithm to investigate the relationship between tumor mi-
croenvironments (TME) and prognosis [5-7].

In current study, Differentially Expressed Genes (DEGs) between 
primary and liver metastases of CRC were screened out from 
GSE50760, and prognosis-related genes were identified from the 
public databases of adenocarcinoma and rectal adenocarcinoma 
dataset from The Cancer Genome Atlas Colon (TCGA-COREAD). 
A prognostic model was developed by using the lasso cox re-

gression method and verified the performance by using the TC-
GA-COREAD and GSE161158 gene expression cohort. Analyses 
of functional enrichment and tumor microenvironment were also 
conducted to explore the potential mechanisms.

3. Materials and Methods
3.1. Data Collection and Preprocessing 

Differentially Expressed Genes (DEGs) screening dataset 
GSE50760 was retrieved from the Gene Expression Omnibus 
(GEO) database. This cohort included RNA-seq data of 54 sam-
ples (normal colon, primary CRC, and liver metastasis) which 
were generated from 18 CRC patients. Sequencing was performed 
in paired end reads (2x100 bp) using Hiseq-2000 (Illumina). The 
gene expression and clinical information of colon adenocarcinoma 
(COAD) and rectal adenocarcinoma (READ) samples were down-
loaded from the UCSC Xena Browser (https://xenabrowser.net/) 
[8]. Totally 641 colorectal adenocarcinoma (COREAD) samples 
with corresponding expression and clinical data were obtained 
after combining the information of COAD and READ datasets. 
Another validation cohort GSE161158 was also downloaded from 
GEO database, which was performed on the microarray platform 
of [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 
Array. In GSE161158, totally 250 AJCC-TNM staging II or stag-
ing III CRC patients were enrolled.   

3.2. Identification of Differentially Expressed and Prognostic 
Genes

In GSE50760 cohort, Differentially Expressed Genes (DEGs) be-
tween liver metastatic tissues and corresponding primary tumor 
were identified by R package “limma”, according to false discov-
ery rate (FDR) < 0.05 and |log2FoldChange| > 2. Through uni-
variate Cox analysis, the association between expression levels 
of DEGs between primary and liver metastatic tissues and CRC 
patients’ Overall Survival (OS) was explored. DEGs with prog-
nostic value in the GSE50760 cohort were subjected to construct 
a prognostic model.

3.3. Construction and Validation Of The Prognostic Model

According to the expression of prognostic DEGs and survival data, 
the LASSO Cox regression analysis by R package “glmnet” was 
performed to further select the most useful prognostic markers and 
the penalty regularization parameter lambda was chosen based on 
5 cross-validations. Through multiplying the expression level of 
a gene by its corresponding Cox regression coefficient, the risk 
score for each patient was calculated using the following formula: 
risk score = esum (each gene’s expression × corresponding coeffi-
cient). The patients were separated into high- and low-risk groups 
based on the median value of the risk score. The “Rtsne” package 
and the “prcomp” function in the “stats” package were used to 
perform the t-SNE and PCA analysis to explore the distribution 
of high- and low-risk groups. Kaplan–Meier survival curves and a 
time-dependent ROC curve analysis were applied to compare the 
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survival between the above two groups and evaluate the model’s 
predictive ability using the “survivalROC” package in R, respec-
tively.

3.4. Functional Enrichment Analysis

The enrichment analysis of Gene Ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) was carried out accord-
ing to the DEGs to explore different molecular mechanisms and 
between high- and low-risk patients by utilizing the “clusterProfil-
er” R package. The P values are adjusted using the BH method to 
control the FDR.

3.5. Inference of Immune Infiltration in Samples and Calcula-
tion of Immune Score, Stromal Score, and ESTIMATE Score

A deconvolution algorithm called CIBERSORT was used in the 
study, which can quantify the percentage of different types of tu-
mor-infiltrating inflammatory cells (TIICs) accurately, under the 
complex “gene signature matrix” based on 547 genes. In the cur-
rent study, we illustrated the immune infiltration of each sample 
with the LM22 signature file, which can define 22 subtypes of im-
mune cells, including naïve B cells, memory B cells, plasma cells, 
CD8+ T cells, naïve CD4+ T cells, resting memory CD4+ T cells, 
activated memory CD4+ T cells, follicular helper T cells, regula-
tory T cells (Treg cells), gamma delta T cells, resting NK cells, ac-
tivated NK cells, monocytes, M0 macrophages, M1 macrophages, 
M2 macrophages, resting dendritic cells, activated dendritic cells, 
resting mast cells, activated mast cells, eosinophils, and neutro-
phils, with the preset signature matrix at 1000 permutations. After 
using the CIBERSORT program, the distribution of 22 subtypes 
of TIICs was presented, along with the results of correlation coef-
ficient, P‐value and root mean squared error (RMSE), which can 
evaluate the accuracy of the results in each sample. The P‐value ≤0 
.05 reflects a statistical connotation of the results of deconvolution 
across all cell subsets for each sample and is useful for exclud-
ing results with less accuracy. Finally, 18 primary tumors, 18 liver 
metastatic tissues and 18 control samples were selected for later 
analysis because they met the required P‐value. 

ESTIMATE (Estimation of Stromal and Immune cells in Malig-
nant Tumor tissues using expression) algorithm was used to eval-
uate the ratio of the immune- stromal component in the tumor 
microenvironment (TME) through utilizing “estimate” R package, 
which generates three scores including Immune Score (reflecting 
the level of immune cells infiltrations), Stromal Score (reflecting 
the presence of stroma), and ESTIMATE Score (reflecting the sum 
of both). The higher the respective score is, the larger the ratio of 
the corresponding component in TME exists.

3.6. Statistical Analysis

Student’s t-test was applied to identify the differentially expressed 
genes between tumor tissues and adjacent tissues and evaluate 
the difference of Immune Score, Stromal Score, and ESTIMATE 
Score between risk groups. The Chi-squared test was used to com-

pare the difference of proportion composition. The OS between 
groups was compared by using the Kaplan–Meier analysis with 
the log-rank test. And the identification of an independent classifi-
er of OS was managed by the analysis of univariate and multivari-
ate Cox regression. All statistical analyses were completed with R 
software (Version 4.1.0). All P values are two-tailed with a P value 
less than 0.05 was considered statistically significant. 

4. Results
4.1. Identification and Functional Enrichment Analysis of 
Prognostic Degs Between Primary and Liver Metastatic Tis-
sues

A total of 158 DEGs were identified between primary and liver 
metastatic tissues in GSE50760, which were visualized by volca-
no map and heatmap (Figure 1A-B, Figure-S1). According to the 
univariate Cox regression analysis, 13 of the above DEGs were 
correlated with OS in the COREAD TCGA cohort, including 8 
protective genes and 5 risk genes (Figure-2a and Figure-2b). To 
verify the correlation of biological functions and pathways with 
the prognostic model, the GO enrichment and KEGG pathway 
analyses were carried out according to the DEGs between the high-
risk and low-risk groups in TCGA-GOREAD cohort. The genes 
were mainly enriched in the small molecule catabolic process and 
carbohydrate transmembrane transport between two groups in GO 
enrichment analysis (Figures 2E-G). KEGG pathway analysis also 
revealed that the amino metabolism and pentose phosphate path-
way was enriched in the COREAD cohorts (Figures 2H).

4.2. Construction of A Risk Score Model in the TCGA Cohort

LASSO regression analysis was used to develop a risk score by 
analyzing the expression level of the 13 DEGs mentioned above. 
8 genes most contributing to the OS of CRC patients were iden-
tified, according to the minimal value of lambda (Figure 3A-B, 
Figure S2) , and a risk formula was constructed with the expres-
sion levels of 8 genes: risk score = e(-0.168 ∗ expression level of 
FGL1+0.466∗ expression level of HPD + -0.333∗ expression level 
of SLC2A2 +0.218∗ expression level of C8G + 0.121∗ expression 
level of CDO1+-0.119∗ expression level of ALDOB +-0.038∗ ex-
pression level of SPINK4 +-0.006∗ expression level of ITLN1) . 
The patients in the COREAD cohort were divided into high- and 
low-risk groups, using the median risk score as the cut-off in both 
training set and test set. The expression pattern of risk genes in 
the high- and low-risk groups was visualized by heatmap, patients 
with high-risk demonstrated upregulation of HPD, C8G, CDO1, 
in contrast to patients with low-risk scores expressed upregula-
tion of FGL1, SLC2A2, ALDOB, SPINK4, ITLN1 (Figure 2A-B). 
Besides, the risk signature for OS was ranked (Figure 2C-D). The 
OS status of individual patients with CRC was demonstrated by 
dot plots (Figure 2E-F). Meanwhile, significant differences were 
observed in the expression of all 8 DEGs between groups (high- 
vs. low-risk scores; p < 0.001; Figures 2D-I). As for the whole 
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patients from TCGA-COREAD cohort, the overall survival of the 
high-risk group was poorer than that in the low-risk group (Figure 
3I, P<0.001). Moreover, the ROC curves were utilized to make an 

evaluation of the model, and the Area Under The Curve (AUC) 
reached values of 0.735, 0.745, and 0.753 at 1, 3, and 5 years, 
respectively (Figure 3J). 

Figure 1: The flow diagram of data collection and analysis in the study
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Figure 2: Volcano map(A) and heatmap(B) show DEGs between primary tumor and corresponding liver metastases in CRC were screening from 
GSE50760. Heatmap of the expression of prognostic DEGs between primary tumor and corresponding liver metastases in CRC (C). The depth of red 
represents the level of high expression, and the depth of green represents the level of low expression * P<0.05, **<0.01, ***<0.001, ****<0.0001. The 
effect of DEGs on the prognosis of CRC (D). GO terms and KEGG for mRNAs with 13 prognostic DEGS between primary CRC and corresponding 
liver metastases, including Cellular component (E), biological process (F), molecular function (G) and KEGG (H).

Figure 3: Heatmap demonstrates the expression of 8-signature risk model genes in the high- and low-risk score groups in training set and test set (A-B). 
Risk score distribution (C-D), scatter plot (E-F) and Kaplan–Meier OS curves (G-H) of high-risk group and low-risk group. The Kaplan-Meier plot of 
the risk score model to show the for the CRC prognostic status (I). The ROC curves of risk score model for the prognostic accuracy of CRC patients 
in 1-year, 3-years and 5-years (J).
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4.3. Clinicopathological Relationship and Independent Prog-
nostic Value of the Risk Signature Model

The association between the risk signature and different clinical 
characteristics was analyzed, and gender, age, tumor location, 
TNM pathological stage, T stage, N stage, and M stage were in-
cluded (Figure 4 and Table 1). The tumor with a high-risk score 
tended to locate on the colon and have more invasive tumor traits 
including the later pathological stage, greater tumor depth, lym-
phatic node metastasis, and distant organ metastasis. Moreover, we 
plotted the Kaplan-Meier curves for different clinicopathological 
features based on the stratification of the risk signature model. As 
shown in Figure, except for stage IV (P=0.054), under the condi-
tion of other clinical factors, the 8-gene risk signature model was 
all closely associated with patient prognosis (Figure 5).  

To further study the significance of the model in risk stratification, 
we carried out univariate and multivariate Cox regression analy-
ses in training set and validation set of TCGA-COREAD cohort. 
As demonstrated in Figure 4, there were significant relationship 

with OS in the TCGA cohort training set (HR =1.382, 95% CI 
= 1.144–1.670, P < 0.001, Figure 6A) and test set (HR =1.296, 
95% CI = 1.154–1.455, P < 0.001, Figure 6B) respectively. Further 
multivariate analyses revealed the risk score could be taken as an 
independent predictor for OS (training set: HR =1.367, 95% CI = 
1.199–1.559, P < 0.001, Figure 6C; test set: HR =1.292, 95% CI = 
1.161–1.439, P < 0.001, Figure 6D).

3.4 Verification of Prognostic Signature in colorectal GEO Cohort.

According to the model developed by COREAD TCGA cohort, 
the prognostic score of each patient from GSE161158 were figured 
out. Afterward, the patients were divided into the high-risk and 
low-risk group based on the median value of the risk score (Fig-
ure 4A-B). Considering the prognosis-related data of GSE 161158 
were disease-free survival, the TNM stage IV were excluded. In 
consistent with the test set and validation set, the validation set 
patients with high-risk scores proved a poorer DFS (P=0.025) and 
the AUC of 3-year DFS was 0.603 (Figure 4D-E).

Figure 4: Stratified prognostic analysis of the clinicopathological parameters for CRC patients. The plot-boxes represent the Risk score of high and low 
risk patients according to gender (A), age (B), tumor location (C), TNM stage (D), T stage (E), N stage (F), and M stage (G). A two‐sided Log‐Rank 
and Wilcoxon test; P < 0.05 was considered significant.

Table 1: Clinical information of the high- and low risk groups

 Level High-risk Low-risk P286 303
Gender (%) FEMALE 149 (52.1) 129 (42.6) 0.026

MALE 137 (47.9) 174 (57.4)  
Age (%) <=65 128 (44.8) 129 (42.6) 0.652

>65 158 (55.2) 174 (57.4)  
Location (%) Colon 197 (68.9) 233 (76.9) 0.036

Rectum  89 (31.1)  70 (23.1)  

TNM Stage (%)
I  45 (16.4)  61 (20.6) 0.085
II 100 (36.4) 123 (41.6)  
III  89 (32.4)  84 (28.4)  
IV  41 (14.9)  28 ( 9.5)  

T.stage (%)
T1   9 ( 3.1)  10 ( 3.3) 0.289
T2  45 (15.7)  62 (20.5)  
T3 197 (68.9) 205 (67.7)  
T4  35 (12.2)  26 ( 8.6)  

N.stage (%)
N0 154 (54.2) 191 (63.0) 0.027
N1  68 (23.9)  70 (23.1)  
N2  62 (21.8)  42 (13.9)  

M.stage (%) M0 209 (83.6) 243 (90.0) 0.042
M1  41 (16.4)  27 (10.0)  
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Figure 5: (A)Heatmap and clinicopathological characteristics of the subgroup classified by the 8-gene prognostic signature in COREAD. Kaplan–
Meier OS curves for patients with TNM stage(B), gender (C), age
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Figure 6: Cox’s proportional hazard model of correlative factors in CRC patients. Univariate Cox regression analysis for the clinicopathological 
parameters affecting the overall survival in training set and test set of TCGA-COREAD cohort (A-B). Multivariate Cox regression analysis for the 
clinicopathological parameters affecting the overall survival in training set and test set of TCGA-COREAD cohort (C-D).

4.5. The Relevance of Risk Signature Model with Immune In-
filtration 

To distinguish the variance of the distribution of 22 TIICs between 
the two risk groups, we analyzed the CRC cases through the CIB-
ERSORT algorithm on the basis of expression profiles from TCGA. 
The violin plot exhibited the ratio differentiation of 22 TIICs be-
tween high- and low-risk group expression (Figure 6A). Mono-
cytes (P = 0.006), macrophage M0 (P < 0.001) and macrophage 
M1 (P < 0.001) were enriched in the high-risk group, while plasma 
cells (P = 0.010), T cells CD4 memory resting (P < 0.001) and 
dendritic cells activated (P = 0.006) were increased in the low-
risk group. Next, Immune Score, Stromal Score, and ESTIMATE 
Score were analyzed to assess the contents of the immune-stromal 
components in tumor microenvironments (TME). As manifested 
in Figure, Stromal Score and ESTIMATE Score were significantly 
higher in high-risk groups (P < 0.001 and P = 0.0019, respective-
ly), which demonstrated that more immune-stromal components 
existed in TME of the high-risk group (Figure 6B-D).

5. Discussions
Metastases are the main reasons for the poor prognosis of CRC, 
especially for liver metastases. It is of great significance to predict 
the progression risk of patients and carry out appropriate interven-
tion for the high-risk group. In the current study, we established 
and validated an 8-signature risk model based on DEGs between 
the primary CRC and corresponding liver metastases, which could 
be taken as an independent risk factor. Firstly, we utilized the R 

limma package to screen out 158 DEGs between the primary and 
corresponding metastatic lesions. Subsequently, 13 of these genes 
were identified in the univariate Cox analysis in TCGA-COREAD 
cohort. Enrichment analysis was conducted to these genes that 
were significantly correlated with pathways of small molecule cat-
abolic process and transport, including the ubiquinone and other 
terpenoid-quinone biosynthesis, alpha-amino acid catabolic pro-
cess (Taurine and hypotaurine metabolism, phenylalanine metabo-
lism, tyrosine metabolism, cysteine and methionine metabolism), 
and monosaccharide transmembrane transport. The stepwise re-
gression algorithm was used to develop an 8-gene signature as a 
prognostic risk model by using Lasso regression. There were 8 
signatures constituting the risk model, including with high-risk 
demonstrated upregulation of HPD, C8G, CDO1, in contrast to 
patients with low-risk scores expressed upregulation of FGL1, SL-
C2A2, ALDOB, SPINK4, ITLN1.

Notably, all eight DEGs have prognostic significance in tumor 
development. CDO1 plays a role as a methylation-specific gene 
in human cancer and the methylation abnormalities in CDO1 has 
been reported as a prognostic factor in various cancers, includ-
ing colorectal cancer, breast cancer [9], gallbladder cancer [10], 
esophageal squamous cell carcinoma [11], and lung cancer [12]. 
The methylation abnormalities in CDO1 reflect the accumulation 
changes with progression and the degree of malignancy. Primary 
CRC cancers with liver metastasis harbored significantly higher 
methylation of CDO1 than those without liver metastasis [13]. It 
was demonstrated that the protein encoded by HPD is an enzyme 
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in the catabolic pathway of tyrosine. This kind of protein catalyz-
es the conversion of 4-hydroxyphenylpyruvate to homogentisate, 
which is a cause of tyrosinemia type 3 and hawkinsinuria. GO an-
notations related to this gene include oxidoreductase activity, act-
ing on single donors with incorporation of molecular oxygen and 
4-hydroxyphenylpyruvate dioxygenase activity [14]. The protein 
encoded by C8G belongs to the lipocalin family, which is one of 
the three subunits that constitutes complement component 8 (C8). 
C8 participates in the formation of the Membrane Attack Complex 
(MAC) on bacterial cell membranes. Gene Ontology (GO) annota-
tions related to this gene include complement binding [14]. Gene 
expression analyses indicated that the expression levels of FGL1 
were increased in human solid tumors, such as colorectal cancer, 
lung cancer, and breast cancer [15]. FGL1 promotes the develop-
ment of tumor, which is involved in EMT process tumor prolif-
eration, apoptosis, radiation and drug sensitivity [16-19]. More-
over, the FGL1 could combine with LAG-3, which weakens the 
cytotoxicity of CD8+ T cells and contributes to tumor growth [15] 
[20]. Lin and colleagues demonstrated that high levels of SLC2A2 
in human colon cancer tissues are associated with advanced stages 
and poor prognosis. The inhibition of SLC2A2 can be effectively 
used for colon cancer chemoprevention [21]. Metabolic and tran-
scriptomic analyses showed that ALDOB was upregulated in the 
liver metastases compared with the primary tumor [22]. Targeting 
ALDOB inhibition significantly reduces liver metastatic growth 
but has little effect on the primary tumor [23]. Mechanically, si-
lencing ALDOB activated epithelial markers and repressed mes-
enchymal markers, indicating inactivation of ALDOB may lead 
to inhibition of Epithelial-Mesenchymal Transition (EMT) [24]. 
SPINK4 expression was downregulated in CRC compared with 
that in normal tissues, and low level of SPINK4 expression was as-
sociated with poor prognosis in CRC patients. The lower SPINK4 
expression was significantly related to higher TNM stage. [25]. 
As for rectal cancer, the high SPINK4 expression is associated 
with advanced clinicopathological features and a poor therapeu-
tic response among the patients undergoing neoadjuvant concur-
rent chemoradiotherapy [26]. ITLN1 acts as a tumor suppressor in 
various cancers, such as gastric cancer, colon cancer and ovarian 
cancer [27, 28]. Katsuya showed that the CRC cases with reduced 
ITLN1 expression had higher M grades than CRC cases in which 
ITLN1 was retained, and patients with retained ITLN1 expression 
tended to have more favorable prognoses than those with reduced 
ITLN1 expression [29]. Increased ITLN1 expression in CRC cells 
significantly inhibited local pre-existing vessels sprouting, and 
the infiltration of immunosuppressive myeloid-derived suppres-
sor cells into tumor tissues without affecting the behavior of CRC 
cells [26].

Furthermore, a LASSO Cox regression was performed to establish 
an 8-gene biomarker as a novel prognostic model. The prognos-
tic efficiency of the signature was investigated in TCGA dataset 
and GEO validation by Kaplan-Meier survival curves and ROC 

curves, which proved a good predictive performance of risk mod-
el. We carried out a Cox regression analysis on risk score, age, 
gender, tumor location and TNM stages. Results showed that the 
immune risk score model was an independent factor for predict-
ing the prognosis of CRC. Considering the significance of clini-
cal factors, Kaplan-Meier curves were applied to different clinical 
pathological parameters. As shown in the results, the model could 
obviously distinguish the difference in survival in aspect of TNM 
stage I-III, gender (both male and female), age (both ＞65 and 
≤65), and tumor location (both colon and rectum). Importantly, the 
risk score tent to improve with the progression of tumor in TCGA 
cohort. The CRC with higher TNM stage, deeper invasion, more 
positive lymph node and distant metastasis tend to have higher 
score, which may implement the risk score may predict the tumor 
progression and patients’ clinical outcomes. 

Accelerated cancer deterioration is not only related to malignant 
cells, but also affected by the TME [30]. Tumor-infiltrating im-
mune cells in the TME play a central role in a series of tumor 
behaviors, such as tumorigenesis, tumor proliferation, metastases 
and even tumor suppression. Thus, we evaluated the infiltrating 
immune cells in two risk group to reflect the TME of CRC. In the 
present study, the high-risk group has a higher level of monocytes 
and macrophages, but low-risk group has a higher level of plasma 
cells, T cells CD4 memory resting, and dendritic cells activated. 
Monocytes have been previously shown to promote metastasis 
[31]. Previous studies have shown that monocytes from patients 
with advanced cancer secreted higher level tumor necrosis factor-α 
(TNF-α) than those from patients at early stage. Monocytes in CRC 
are prone to produce TNF-α after stimulation, which is related to 
the survival risk [32]. Of note, we also found that high infiltration 
of M1 macrophages were associated with poor prognosis. In pre-
vious studies, M1 macrophages were often known to inhibit cancer 
progression. Zhang et al. reported that low infiltration of M1 mac-
rophages was associated with poor progress of the prostate cancer 
patients in TCGA cohort [32, 33]. In our study, high infiltration of 
high level of M1 macrophages was found in high-risk tissues with 
reduced survival. There are two possible reasons for this opposite 
conclusion: one is that our model does not include enough samples 
and leads to result shifts, and another one is that M1 macrophages 
infiltrating into the CRC microenvironment are polarized into M2 
macrophages. However, the mechanism needs to be further studied 
by experiments. Dendritic cells play a central role in the adaptive 
anti–tumor immune response. They act as sentinels, detect tumor 
antigens, present them to CD8+ T‐cells, and supply necessary 
signals for both activation and suppression of CD8+ T‐cells [34]. 
Studies investigating the clinical value of tumor‐associated DC in 
CRC have found associations with improved outcome [35]. Nota-
bly, it was demonstrated that the number of infiltrating mature DC 
was higher in the CRC samples, while the DC density in metasta-
ses was markedly lower than in CRC primary tumors [35]. Similar 
results showed that a significant reduction of the DC number in 
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total and advanced stage-CRC patients compared to healthy con-
trols and reported that this reduction was totally recovered after 
complete tumor resection [36]. 

The limitations of present study are as follow. The limited sample 
size and follow-up data may have led to selection bias. There was 
no OS data in validation set but given the sample qualities and size 

of the set, the DFS was used to evaluate the model value instead. 
For better clinical application value, further studies with larger 
sample sizes are needed to support results, and more function ex-
plorations should be conducted on the 8 genes in this research. 
Moreover, basic studies and clinical trials ought to be carried out 
to verify the predictive efficiency of our model and to identify po-
tential liver metastasis-related mechanisms.

Figure 7: Heatmap demonstrates the expression of 8-signature risk model genes in the high- and low-risk score groups in validation set (A). Risk score 
distribution (B), scatter plot (C) and Kaplan–Meier OS curves (D) of high-risk group and low-risk group. The ROC curves of risk score model for the 
prognostic accuracy of CRC patients (E).
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Figure 8: The violin map showed statistical differences between the immune cells of 8-signature risk groups (A). Estimation of the proportion of 
immune-stromal component. Immune Score, Stromal Score, and ESTIMATE Score (the sum of them) between different risk groups in the TC-
GA-COREAD cohort (B-D).

Supplementary Figure 1: LASSO Cox regression model to 8 prognostic factors used to construct risk score model in the TCGA cohort. (A) LAS-
SO coefficient profiles of the ex- pression of 5 overlapping genes. (B) Selection of the penalty parameter (Lambda) in the LASSO model via 5-fold 
cross-validation.
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6. Conclusions
In this study, we constructed an 8-gene signature (HPD, C8G, 
CDO1, FGL1, SLC2A2, ALDOB, SPINK4, ITLN1.) prognostic 
stratification system based on the DEGs between primary and liver 
metastasis lesions of CRC, and evaluated the value of the signa-
ture. The risk model had better AUC in both the training cohort 
and the independent validation cohort and was independent of 
clinical features. Therefore, we recommend this classifier as a mo-
lecular diagnostic test to assess the prognostic risk in patients with 
CRC. And it may have potential significance for new anti-tumor 
diagnosis and treatment strategies.
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