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1. Abstract
Differentiation status of glioma cells correlated with prognosis 
and Tumor-Immune Microenvironment (TIME) in patients with 
gliomas. This study aimed to identify differentiation-related long 
non-coding RNAs (DRlncRNAs) that can be used to predict the 
outcome and the response to immunotherapy in patients with glio-
mas. The single-cell transcriptomics analysis identified five differ-
entiation states and their associated Differentiation Related Genes 
(DRGs) in glioma cells. Weighted correlation network analysis 
and univariate cox regression analysis were involved in obtaining 
the prognostic DRGs. Using co-expression analysis, we extract 
differentiation-related lncRNAs. We constructed the prognostic 
model based on DRlncRNAs by using univariate Cox regression 
analysis, least absolute shrinkage analysis, and selection operator 
analysis. A DRlncRNA signature composing of 13 genes was iden-
tified for predicting the survival of glioma patients, and a nomo-

gram model integrating the risk score and multi- clinicopathologi-
cal factors was constructed. High-risk patients had shorter overall 
survivals and better responses to immune checkpoint blockages. 
We identified six candidate drugs by analyzing the differentially 
expressed genes in the low-risk and high-risk groups. In glioma 
patients, the risk score may not only help determine prognosis but 
may also assist in predicting immunotherapy response. By com-
bining bulk RNA-seq data with DRlncRNA, we separated glioma 
patients into three clusters with distinct clinicopathological fea-
tures. Three clusters identified distinct clinicopathological char-
acteristics, TIME, immunogenomic patterns, and immunotherapy 
responses.

2. Introduction
Glioma is the most malignant brain tumor in the central nervous 
system. According to the World Health Organization (WHO), they 
are classified into four grades (I to IV) based on their pathological 
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characteristics [1, 2]. Despite comprehensive treatments, including 
surgery and chemoradiotherapy, recurrences are high [3]. Glioma’s 
overall survival (OS) has not improved, and a 5‐year OS overall 
survival rate is less than 35%. Although numerous gene signatures 
have served as prognostic models, the accuracy and clinical appli-
cation of these models remain to be improved [4-8].

Furthermore, the prognosis for patients with gliomas after surgi-
cal resection can be dismal when combined with radiotherapy and 
chemotherapy [9]. As a novel therapeutic strategy, More and more 
cancers are being treated with immunotherapy [10]. Clinical trials 
with gliomas, however, showed only a tiny number of productive 
immune responses due to a lack of precise selection of biomark-
ers [11]. Biological predictors are urgently needed to discriminate 
prognoses and immune responses among patients with gliomas. 
By determining Differentiation related genes (DRGs) involved in 
GSCs compared to astrocytes, new biomarkers and treatments for 
Glioma could be identified. 

At the same time, long non-coding RNAs (lncRNAs) are tran-
scripts with more than 200 nucleotides that do not code for pro-
teins [12]. Up to 80% of the human transcriptome is composed of 
long non-coding RNAs [13]. Since lncRNAs regulate a wide range 
of processes, they are involved in the process of Tumorigenesis in 
a wide variety of diseases. It has also been reported that dysregu-
lation of long non-coding RNAs contributes to glioma pathogenic-
ity. Furthermore, lncRNA signatures have been reported to predict 
the survival of glioma patients [14]. It has been shown in Glio-
ma that ferroptosis-related lncRNA signatures are associated with 
prognosis, tumor microenvironment, and response to radiotherapy 
[15]. The above studies have proved that lncRNAs are of great sig-
nificance in differentiating tumors, occurrence, and development. 

Therefore, we hypothesized that differentiation-related lncRNAs 
(DRlncRNAs) have more important clinical significance. Cur-
rently, occasional papers have been published focusing on gene 
signatures for predicting prognosis and immunotherapy responses 
based on DRlncRNAs. It is possible to predict new drug candi-
dates by comprehensively analyzing DRlncRNAs. In this study, 
we attended to explore the multiple differentiation states of glioma 
cells through analysis of single-cell RNA sequencing (scRNA-seq) 
of gliomas to obtain DRGs. Then, Differentiation related lncR-
NAs were obtained by co-expression analysis which can predict 
prognosis, immunotherapy response, and candidate targeted drugs 
combined with bulk RNA-seq data.

3. Methods
3.1. Acquisition of scRNA-seq Data and Bulk RNA-seq Data

The TCGA (https://portal.gdc.cancer.gov/), GEO (https://www.
ncbi.nlm.nih. gov/geo/), and CGGA (Chinese Glioma Genome At-
las, http://cgga.org. cn/index.JSP) databases contain all the data 
supporting the findings of this study. SCRNA-seq data were ob-
tained from the GSE103224 dataset in the GEO database, which 

contained 23,793 glioma cells from eight patients [16]. First, we 
corrected the sample data with the” limma” package and extract-
ed the intersection genes of the eight samples [17]. R software 
(version 4.1.3) was used to preprocess scRNA-seq data using the 
Seurat and Monocle packages [18]. PercentageFeatureSet was 
used to calculate mitochondrial gene content. Genes detected in 
< 3 cells were excluded and several genes< 50 and ≥ 5% mito-
chondrial expressed genes were excluded, after which 1394 cells 
were selected for further analysis. The top 1500 highly variable 
genes were found using the ‘vst’ selection method after the ScR-
NA-seq data were normalized using the ‘LogNormalize’ method. 
Bulk RNA-seq data of patients with GBM and Low-Grade Glioma 
(LGG) were acquired from TCGA (http://cancergenome.nih.gov/) 
database. GSE43378 data sets were obtained from the GEO data-
base. CGGA325 and CGGA693 data sets were obtained from the 
CGGA database (http://cgga.org. cn/index.JSP).

3.2. Data Processing for scRNA-seq

First, the dimension of the glioma cells was reduced using PCA.
We used the t-distributed stochastic neighbor embedding (tSNE) 
algorithm to cluster the top 15 principal components (PCs) with 
significant values [20]. In each cluster, gene markers with a log2 
FC > 1 and p values adjusted to 0.05 were identified using the lim-
ma package. As part of this study, the ‘SingleR’ package was used 
to automatically annotate scRNA-seq data [21]. As a reference, the 
human primary cell atlas data included in ‘celldex’ were used [22].

Pseudotime and trajectory analysis. The ‘Monocle’ package was 
used to analyze pseudotime and trajectory data for astrocytes and 
tissue stem cells. Differentiation states of cells distributed in the 
same branch were considered the same. We defined DRGs as 
DEGs in cells with distinct differentiation states with |log2 (FC)| 
greater than 1 and p values adjusted by 0.05.

Extraction of differentiation genes. For normalization, the tran-
scripts per million (TPM) values of glioma samples were trans-
formed to log2-scale values and combined with transcriptional 
data from GSE43378 and CGGA325. After merging the data, the 
batch effects were corrected using R’s spa package. DRG expres-
sion patterns were extracted for analysis. First, WGCNA was used 
to identify the key module correlated with Differentiation. Subse-
quently, we performed differential expression analysis of the ex-
tracted key genes. Univariate cox regression analysis was carried 
out to screen out the genes involved in the key module with prog-
nostic values using the ‘survival’ package, in which p<0.001 was 
considered statistically significant.

Co-expression analysis to extract differentiation-related lncRNAs. 
Firstly, the transcriptome data of the two (TCGA, CGGA693) 
were intersected to extract the expression levels of intersected 
genes. LncRNA was extracted using Perl language. Then, to get 
differentiation-related lncRNAs (DRlncRNAs), we performed a 
co-expression network, and it was visualized by (“graph”) packag-
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es with corFilter=0.6 and pvalueFilter=0.001. Differential expres-
sion analysis was performed between tumor and normal samples 
and visualized by (“heatmap”) packages with logFCfilter=1 and 
fdrFilter=0.05. 

Construction and validation of DRlncRNAs based prognostic 
model. To evaluate the prognostic value of the DRLncRNAs, Cox 
regression was used. The hazard ratio (HR), 95% confidence inter-
val (CI), and P values of each variable are displayed on the forest 
map. Based on HR, we determined protective DRlncRNAs (HR < 
1) and risk DRGlncRNAs (HR > 1). A Lasso regression model was 
constructed with the “glmnet” R package to screen optimal DRln-
cRNAs for prognosis. The optimal value of the penalty parameter 
(λ) was determined based on the results of 1000 cross-validation 
runs. The weighted regression coefficients and expression levels 
of prognostic DRlncRNAs were derived, and the following for-
mula was used to calculate each patient’s risk score of survival: 
Risk score (RS) = ∑Ni−1Expi ∗ Coie . Patients with Glioma in the 
TCGA were divided into low- and high-risk groups based on their 
median risk score. Kaplan-Meier analysis was used to compare 
the survival times of the two groups. For comparing gene and risk 
score prediction accuracy, ROC analyses were performed using 
the “survival,” “survminer,” and “timeROC” packages. Statistical 
analysis of progression-free survival (PFS) was performed on the 
two groups to determine whether risk scores were related to PFS. 
By quantifying the net benefits along with the increase in thresh-
old probabilities, a decision curve analysis (DCA) was carried out 
using the (“ggDCA”) package to determine the clinical benefit. 
With the “timeROC” package, we drew ROC curves separately for 
each dataset and compared them to the survival-related lncRNAs’ 
performance. 

Validation of the Risk Score Model. The samples were randomly 
divided into the Train group and Test group at a ratio of 1:1 using 
the “caret” R package. They then used the Train group to construct 
a prognostic model and the Test group to perform internal Valida-
tion. 

Univariate Cox and Multivariate Cox Regression Analysis. To as-
sess whether risk score can be regarded as an independent pre-
dictor of overall survival of glioma patients, univariate Cox and 
multivariate Cox regression analyses were performed with a risk 
score, gender, age, and grade as variables using the R“survival” 
package. 

Construction of nomogram. The nomogram was developed using 
the R packages rms and replot to combine risk score and clinico-
pathological factors. Predictions for survival at the time of 1-, 2- 
and 3- years were accomplished. The nomogram’s accuracy was 
examined through calibration curves.

Principal Components Analysis. PCA was carried out with “R” to 
obtain the expression patterns of optimal immune-related lncR-
NAs in low-risk and high-risk groups.

Functional Annotation of DRGlncRNAs.  GO biological processes 
and KEGG pathways with P < 0.05 were considered significantly 
enriched. The KEGG and ontology gene sets (c5.go.bp.v7.4.sym-
bols.GMT, c2.cp.kegg.v7.4.symbols.GMT) used for GSVA were 
downloaded from GSEA database (https://www.gsea-msigdb.org/
gsea/index.jsp). 

Immune correlation analysis between two groups. First, using the 
CIBERSORT algorithm, we predicted the relationship between 
risk scores and immune cells. Several packages such as “Limma,” 
“survival,” and “survminer” were used to determine the survival 
differences between high- and low-score patients with each type 
of immune cell. Then we used the “GSVA” R package for GSVA 
enrichment analysis to analyze the biological processes associated 
with immune cells or immune-related functional pathways. Infil-
tration scores of immune cells were calculated using single-sam-
ple GSEA (ssGSEA) of the “GSVA” R package using ssGSEA. 
Normalizing the ssGSEA score to a uniform distribution, the ssG-
SEA score is distributed between 0 and 1. In addition, the “limma” 
package in R was used to display differences in pathway activation 
between low-risk and high-risk groups. 

Analysis of Differences in Tumor Microenvironment (TME) and 
Immune Checkpoint. ESTIMATE was designed to count scores for 
reflecting the infiltration levels of immune cells and stromal cells 
within the tumor microenvironment based on the specific genes’ 
expression level of immune and stromal cells using the R package 
“ESTIMATE”23. We used the ESTIMATE algorithm based on the 
expression level of each sample to count the immune score (pos-
itively reflecting the abundance of immune cells), stromal score 
(positively reflecting the abundance of stromal cells), and ESTI-
MATE score (positively reflecting nontumor composites). Then, 
we compared the differences in scores between the high and low-
risk groups and visualized them using the R package “ggpubr.” 
Immune checkpoints were identified as differentially expressed in 
high- and low-risk groups. We investigated the variations in ex-
pression between high-risk and low-risk groups and the disparities 
in survival between high-risk and low-risk groups having distinct 
immune pathways.

Prediction of candidate targeted drugs. This study aims to predict 
chemical compounds that could be used to treat patients who are 
in a high-risk group and a low-risk group. Based on the GDSC 
website, we calculated the IC50 values for the compounds (Dasati-
nib, Bexarotene, Cisplatin, Cytarabine, Sorafenib, and Pazopanib). 
Compounds that might be used as glioma therapy have been pre-
dicted using the “limma,” “pRRophetic,” “ggpub,” and “ggplot2” 
packages. 

Classification for glioma patients based on risk DRlncRNAS. We 
used the DRGlncRNAs gene set described above for subtype gli-
oma patients. Consistency analysis by using the ConsensusClus-
terPlus R package (v1.54.0),50 iterations with maxK = 9 were 
utilized for stable classification, and 80% of the total sample is 
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drawn 100 times, clusterAlg = “hc”, innerLinkage=’ward. D2’. 
Kaplan-Meier survival analysis of the different groups of sam-
ples from the TCGA dataset, comparison among different groups 
was made by log-rank test. HR (95%Cl), the median survival time 
(LT50) for different groups.

Meanwhile, the association between tumor subtypes and high-risk 
groups was also validated. The “Rtsne” and “ggplot2” packages 
were used to visualize data using principal component analysis 
(PCA) and stochastic neighbor embedding (t-SNE). PCA and 
t-SNE were conducted to evaluate the results of clustering.

Cluster immune correlation analysis and prediction of candidate 
targeted drugs. We performed micro environment analysis, im-
mune correlation analysis, immune checkpoint identification, and 
potential drug prediction for tumor subtypes based on the same 
method. The goal was to assess the predominance of tumor sub-
types.

Statistical Analysis. R software (version 4.1.3) was used for sta-
tistical analysis and outcome display. For comparison between 
the two groups, we used the student’s t-test. Chi-square tests were 
used to contrast the classification variables in the training and test-
ing tests. Using the Pearson correlation test, we evaluated the rela-
tionship between subtypes, clinicopathological factors, risk scores, 
immune check inhibitors, and levels of immune infiltration. Sur-
vival analysis was performed using the Kaplan–Meier method with 
a two-sided log-rank test. All p < 0.05 was considered to indicate 
significant, and * if p < 0.05, ** if p < 0.01, and *** if p < 0.001.

4. Results
Quality control and filtration of scRNA-seq data. After quality 
control, filtration, and batch effect correction of the scRNA-seq 
data, a total of 1394 cells were obtained from the GSE103224 da-
taset (Figure 1A). The number of genes detected correlated signif-
icantly with sequencing depth (R = 0.94, Figure 1B). As shown in 
Figure 1C, 20480 genes were detected, and 1500 genes with high 
variability were identified.

Clustering and differentiation trajectory analysis for glioma cells. 
We identified 15 PCs (principal components) that showed sta-
tistical significance for clustering analysis (Figure 1D). Using 
tSNE algorithm, 1394 cells were divided into 12 clusters, and the 
heatmap displays expression patterns of the top 10 differentially 
expressed marker genes in each cluster (Figure S1). According to 
marker genes, 12 clusters of cells were annotated with cell types 
(Figure 1E, F), in which cluster 11 was macrophages; the remain-
ing clusters tended to be close to astrocytes. Pseudo-time and dif-
ferentiation trajectory analyses were performed on 1375 astrocytes 
and stem cells, and five branches of differentiation patterns were 
identified. Figure 1G shows how cells in state 1 differentiated into 
other states after they were initially distributed in that state (Table 
1).

To obtain differential genes associated with prognosis. A total of 

852 marker genes for five cell differentiation states were extracted 
from scRNA-seq database. Subsequently, we extracted the expres-
sion levels of 637 common marker genes from the three databases 
(TCGA, GEO, CGGA325). Through WGCNA (weighted correla-
tion network analysis) integrating clinicopathological data and the 
expression profiles of common genes in the merged data, five mod-
ules were screened out with the optimal soft threshold=5 (Figure 
2A-C), in which the MEbrown, MEgreen, MEblue, and MEyellow 
significantly correlated with the grade of tumors (Figure 2D). A to-
tal of 574 differentiation-related genes (DRGs) were selected to be 
enrolled in the differential expression analysis. Through differen-
tial expression analysis, we screened 105 differentially expressed 
DRGs (Figure 2E, F). 105 DRGs were enrolled in the univariate 
cox analysis. Afterward, 93 DRGs with prognostic values were 
identified. Subsequently, we extracted the expression levels of 
92 DRGs from TCGA and CGGA693 intersection files (symbol.
txt). Through co-expression analysis, we obtained 122 differenti-
ation-related lncRNAs screened out (Figure 2G). Finally, through 
differential expression analysis, we obtained 69 differentiation-re-
lated lncRNAs (DRLncRNAs) (Figure 2H, I) (Figure S2).

Construction and validation of prognostic model based on DRL-
ncRNAs.  Sixty-nine DRLncRNAs were included in the model 
construction. Based on univariate Cox regression analysis, 52 dif-
ferentially expressed DRlncRNAs were related to increased risk; 
the result is shown in Figure 3A. Subsequently, differential DRln-
cRNAs heat maps and Sankey maps were constructed to observe 
DRlncRNAs expression differences and the regulatory relation-
ship between differential DRlncRNAs and genes, as is shown in 
supplementary picture 2. Finally, a prognostic model consisting of 
13 genes was constructed through the least absolute shrinkage and 
selection operator (LASSO) regression algorithm (Figure 3B, C). 
The 13 genes involved in the prognostic model with correspond-
ing coefficients are listed in Table 2. Patients were divided into 
high-risk and low-risk groups with the median risk score cut-off. 
As shown in Figure 3D, the overall survival for patients in the 
low-risk group was significantly higher than those in the high-risk 
group either in the training or validation cohort (p < 0.001). In the 
same way， PFS also showed a better prognosis for the low-risk 
group than for the high-risk group (Figure 3E, p<0.001). To deter-
mine how the prognostic model performed in different subgroups 
with different clinicopathological features, patients were divided 
into a different age, grade, and gender subgroups. A similar re-
sult was obtained: patients in the low-risk group tended to survive 
longer than those in the high-risk group (Figure S3). The promis-
ing predictive value for the glioma special model in the whole set 
was demonstrated by ROC curve analysis (1-year AUC = 0.877, 
2-year AUC = 0.925, 3-year AUC = 0.862) (Figure 3F, G). Finally, 
the DCA curve we constructed showed that the risk model had a 
good clinical performance (Figure 3H). As demonstrated in Figure 
4A and B, the expression levels of COX10-AS1, STXBP5-AS1, 
MIR22HG, SNAP25-AS1, UBL7-AS1, MIR7-3HG, and LEF1-
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AS1, increased with the increasing of the risk scores, indicat-
ing these genes acted as risk genes. TRHDE-AS1, LINC00928, 
TRAF3IP2-AS1, SNAI3-AS1, HAR1A, and DGCR5 as protective 
genes. Survival time and survival rate decreased as risk scores in-
creased. Further examination was performed using univariate COX 
analysis (Figure 4C) and multivariate COX analysis (Figure 4D) 
to evaluate the accuracy of the independent prognostic signature. 
Both groups yielded similar results, suggesting that the prognostic 
signature was effective. For glioma patients at 1, 3, and 5 years, a 
nomogram incorporating age, gender, grade, and risk group was 
constructed (Figure 4E). A calibration curve for predicting overall 
survival at 1-year, 3-year, and 5-year intervals was close to the 
actual observed values (Figure 4F).

PCA Analysis. A total of 706 TCGA patients were included in 
PCA. Figure 5A shows the PCA results of all 17872 genes, and 
Figure 5A shows the PCA results of 13 DRlncRNAs. The high-risk 
and low-risk groups are represented by red and blue dots, respec-
tively. TCGA dataset PCA analysis shows a significant difference 
between pre-corrected and post-corrected samples after RS clus-
tering.

Functional annotation for thirteen risk genes. A GO enrichment 
analysis revealed that DRlncRNAs annotations are categorized into 
three parts: biological processes (BPs), cell compositions (CCs), 
and molecular functions (MFs). After screening, it was found that 
(P<0.001) and the DRlncRNAs were enriched in biological pro-
cesses, such as cysteine type endopeptidase inhibitor activity, reg-
ulation of necrotic cell death, integrin-mediated regulation of cell 
adhesion, peptidase-related regulation, a protein complex involved 
in cell adhesion (Figure S4A). The KEGG analysis showed that the 
DRlncRNAs were mainly concentrated in the lysosome, metabo-
lism of various sugars, regulation of actin cytoskeletons, and other 
signaling pathways (Figure S4B, P<0.001).

Assessment of immunotherapy response in high-risk and low-risk 
patients. To explore the immune correlates of risk scores, we ex-
plored and validated them by using TIMER. The results showed 
that a variety of immune cells were positively associated with a 
patient’s risk score，including B cell (R = 0.12, p = 0.0018), Mac-
rophage (R = 0.37, p < 2.2e-16), Myeloid dendritic cell (R = 0.4, 
p < 2.2e-16), Neutrophil (R = 0.44, p < 2.2e-16), and T cell CD8+ 
(R = 0.57, p < 2.2e-16) (Figure 6A). A GSVA was conducted on a 
patient with glioma to investigate immune pathways and underly-
ing mechanisms. It was found that 16 differentially enriched im-
mune cells, including one immune cell, were unrelated to patient 
risk scores. In the low-risk group, three immune cells showed a 
higher degree of infiltration. In the high-risk group, 12 immune 
cells showed a higher degree of infiltration (Figure 6B). In addi-

tion, 13 immune functions were identified, including APC co-inhi-
bition, APC co-stimulation, CCR, Checkpoint, Cytolytic activity, 
HLA, Inflammation promoting, MHC class I, Parainflammation, 
T cell co−inhibition, T cell co−stimulation, TypeI-IFN response, 
TypeII-IFN repose (Figure 6C). At the same time, based on the ES-
TIMATE algorithm, we calculated the score of TME 706 clinical 
samples. Then, we compared the differences in the score of TME 
between the high-risk score group and the low-risk score group. It 
was found that stromal cells and immune cells had a higher degree 
of infiltration in the high-risk group (Figure 6D). The differential 
analysis of immune gene checkpoints was performed using R soft-
ware. A boxplot was created to visualize gene expression levels 
(Figure 6E).

Prediction of Potential Chemical Drugs between two groups. Ac-
cording to the “prophetic” algorithm, we predicted the IC50 of 6 
common chemotherapeutic agents (Dasatinib, Bexarotene, Cispla-
tin, Cytarabine, Sorafenib, and Pazopanib) in high- and low-risk 
patients. We found that these drugs all had higher IC50 in low-risk 
patients (Figure S5).

Classification for glioma patients based on DRGlncRNAs.  Using 
13 prognostic DRGlncRNAs as a marker, we examined the expres-
sion levels of each gene in the glioma subtype. All 706 samples in 
the TCGA cohort were subjected to a consensus clustering anal-
ysis. The tumor samples were divided into clusters via the “Con-
sensusClusterPlus” package. From 2 to 6, we increased the clus-
tering variable (k). We found that k = 3 had the highest intragroup 
correlations and the lowest intergroup correlations (Figure 7A). 
The survival analysis revealed remarkable differences between the 
three subgroups, with Cluster 3 having a worse survival rate than 
Cluster 1 and 2 (Figure 7B). At the same time, we built a San-
key diagram for typing to check the corresponding relationship 
between typing and risk groups. The results are shown in Figure 
7C. Principal component analysis (PCA) and stochastic neighbor 
embedding (t-SNE) revealed there were distinct features between 
the three clusters in each TCGA (Figure 7D, E) dataset.

Cluster Immune Correlation Analysis and Drug Prediction. We 
used the same method to perform micro environment analysis, im-
mune correlation analysis, immune checkpoint identification, and 
potential drug prediction for tumor subtypes. The results showed 
that stromal cells and immune cells had higher infiltration in Clus-
ter3 (Figure 8A). We constructed an immune-related heat map 
showing more infiltration of immune cells at Cluster3 (Figure 8B). 
The result of Immune Gene Checkpoints is shown in (Figure 8C). 
Drug prediction showed that these drugs (Dasatinib, Bexarotene, 
Cisplatin, Sorafenib, and Pazopanib) all had lower IC50 in Clus-
ter2; there was one fewer drug compared to the risk group (Figure 
S6).
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Figure 1A-G: Analysis of single-cell RNA-seq data for clustering and differentiation trajectory analysis. (A) Result of quality control and fitration for 
the given scRNA-seq. (B) Sequencing depth and number of genes detected are correlated in this scatter plot. (C) Annotated scatter plot showing 1500 
highly variable genes across all samples. (D) Fifteen PCs with significant differences were identified. (E) A scatter plot showing twelve clusters of cells 
processed by 15 PCs using the tSNE algorithm. (F) Annotated scatter plot showing the types of cells. (G) Identifying 5 distinct differentiation states and 
pseudotimes in astrocytes and tissue stem cells.

Table 1: Clinicopathological features of patients in GSE103224

scRNA-seq sample Age Gender Location Diagnosis IDH1 status
GSM2758471 49 F Right frontal Grade IV mutant type
GSM2758472 62 M Left temporal Grade IV Wild type
GSM2758473 65 M Left temporal Grade IV Wild type
GSM2758474 74 M Right frontal Grade IV Wild type
GSM2758475 56 F Left temporal Grade III Wild type
GSM2758476 63 F Left temporal Grade IV Wild type
GSM2758477 50 M Left temporal Grade IV Wild type
GSM2940098 59 M Right parietal Grade IV Wild type

Table 2: Prognostic DRlncRNAs involved in our model.
id coef HR pvalue

COX10-AS1 0.533651768 1.47061978 0.001131885
STXBP5-AS1 0.964861978 0.43569265 4.93E-05
TRHDE-AS1 -0.803268611 0.29635496 2.79E-09
MIR22HG 0.283548262 2.02868441 2.71E-14
SNAP25-AS1 0.294725436 0.6687852 0.003586426
LINC00928 -0.491126776 0.44593442 2.76E-11
UBL7-AS1 0.523850845 2.30760028 3.20E-05
TRAF3IP2-AS1 -0.157405032 0.70331726 5.61E-07
SNAI3-AS1 -0.261828936 0.62839269 3.80E-11
MIR7-3HG 0.198604498 0.87362279 0.016674466
LEF1-AS1 0.582578436 3.18981205 1.01E-27
HAR1A -0.459518509 0.40879419 1.42E-16
DGCR5 -0.144695864 0.55733476 2.95E-18
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Figure 2A-I: Differentiation related lncRNAs was extracted. (A-C) The optimal soft threshold = 5 was identified for five modules based on WGCNA. 
(D) Clinicopathological features correlated with modules. (E-F) Differentially expressed differentiation- related genes. (G) LncRNAs co-expressed 
with differentiated genes. (H-I) Differentially expressed differentiation- related lncRNAs.

Figure 3A-H: The construction of a prognostic model based on DRlncRNAs. (A) DRlncRNA forest plot displaying the results of univariate Cox anal-
yses. (B) LASSO coefficient profiles plotted against log(lambda) sequences. (C) Optimal parameter (lambda) selection in the LASSO model. (D) The 
Kaplan-Meier analysis of low-risk vs. high-risk groups. (E) PFS curves for glioma patients in the high−/low‐risk group. (F) DCA curves for glioma 
patients based on clinical information.
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Figure 4A-F: Validation of differentiation-related lncRNAs prognosis signature. (A) The risk score and patients are distributed based on the risk score 
and the Kaplan-Meier analysis of low-risk vs. high-risk groups in the training group. (B) The risk score and patients are distributed based on the risk 
score and the Kaplan-Meier analysis of low-risk vs. high-risk groups in the text group. (C) univariate COX analysis. (D) multivariate COX analysis. 
(E)Nomograph plot of predicted 1-,3-and 5-year overall survival probability based on prognosis signature. (F) Calibration plots of the nomogram for 
predicting the probability of OS at 1, 3, and 5 years.

Figure 5A-B: PCA analysis of the samples in glioma dataset. The high-risk and low-risk groups are represented by red and blue dots, respectively. (A) 
PCA plot based on all genes of samples. (B) PCA plot based on 13 DRlncRNAs.
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Figure 6A-E: Immune Correlation Analysis based on DRlncRNAs. (A) Various immune cells are involved in DRlncRNAs expression. (B-C) Im-
mune-related cells and functions based on risk score. (D) stromal cells and immune cells had a higher degree of infiltration in the high-risk group. (E) 
Associated immune gene checkpoints.

Figure 7A-E: Classification for glioma patients based on DRlncRNAs. (A) The results of consensus clustering analysis for glioma patients based on 
DRlncRNAs. (B) Overall survival analysis between patients in the three clusters. (C) a Sankey diagram for typing to check the corresponding relation-
ship between typing and risk groups. (D) PCA indicated that three subclasses were obtained in TCGA. (E) tSNE indicated that three subclasses were 
obtained in TCGA.
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Figure 8A-C: Cluster Immune Correlation Analysis. (A) Stromal cells and immune cells had a higher degree of infiltration in Cluster3. (B) an immune-
related heat map shows more infiltration of immune cells at Cluster3. (C)The result of Immune Gene Checkpoints.

Figure S1: Heatmap showing the expression patterns of top 10 differentially expressed marker genes for each cluster.
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Figure S2: Heat map and Sankey map of differentially expressed DRlncRNA.

Figure S3: Kaplan-Meier analysis between the low-risk and high-risk groups with different clinicopathological features. 

Figure S4: Functional and enrichment pathways analysis.
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Figure S5: These drugs all had higher IC50 in low-risk patients.

Figure S6: Prediction of Potential Chemical Drugs. These drugs all had lower IC50 in Cluster2.
5. Discussion
We observed five distinct differentiation states in glioma tissues 
through RNA-seq analysis of single-cell RNA in GEO data. WG-
CNA was used to identify the key module correlated with survival 
and Differentiation. Univariate cox regression analysis was carried 
out to screen out the genes involved in the key module with prog-
nostic values. Finally, DRlncRNAs were obtained by co-expres-
sion analysis. A prognostic model was developed to predict the 
prognosis of glioma patients using 13 DRlncRNAs. To facilitate 
clinical practice, we constructed a nomogram model integrating 
the risk group and the multi-clinicopathological factors. We identi-
fied six candidate targeted drugs through a comprehensive analysis 
of the DRlncRNAs between the low and high-risk groups. We di-
vided glioma patients into three clusters with distinct clinicopatho-
logical characteristics using bulk RNA-seq data from the TCGA 
and CGGA databases.

With single-cell RNA-sequencing, the transcriptional character-
istics of individual cells could be analyzed to study intratumor-
al heterogeneity [24]. This study used single-cell RNA-seq data 
representing high-grade gliomas (HGG). As previously reported, 
transformed cells in HGG resemble glia [25]. A rare subpopulation 
of GSCs was identified, allowing us to explore gliomas’ multiple 
differentiation states. Historically, gliomas have been considered 
a group of heterogeneous tumors originating from astrocytes and 
oligodendrocytes; based on the annotations of all the cells occur-
ring in glioma tissues, we selected astrocytes and tissue stem cells 
for the differentiation trajectory analysis. We identified three clus-
ters based on the expression patterns of DRlncRNAs in glioma 
patients. Cluster prognosis and immunotherapy response results 
indicate that subgroup classification based on differentiation-relat-
ed lncRNAs can more accurately predict the prognosis of patients.

An example would be the gliomas of patients in C2, which had 



clinicsofoncology.com                                                                                                                                                                                                                                    13

Volume 6 Issue 16 -2022                                                                                                                                                                                                                                  Research Article

a worse overall survival rate and a higher risk score. There has 
been evidence linking differentiation-related signaling pathways 
and transcriptional cascades to oncogenesis and progression of 
malignant tumors in previous studies. A differentiation therapy 
involves causing cancer cells to differentiate and become less ma-
lignant through transformative signaling events and identifying the 
treatment options for malignant brain and central nervous system 
tumors [31]. Significant [26] progress has been made in the field of 
differentiation therapy in gliomas. However, there is still a lack of 
understanding regarding the specific mechanisms and therapeutic 
targets involved in this disease [27, 28]. The purpose of this study 
was to identify DRlncRNAs with prognostic values and transcrip-
tion factors that are associated with them so that we could identi-
fy promising candidates for differentiation therapy in the future. 
This study screened DRlncRNAs with prognostic values and the 
corresponding transcriptional factors to provide promising candi-
date targets for prospective differentiation therapy. GO enrichment 
analysis shows that the DRlncRNAs were enriched in biological 
processes, such as cysteine-type endopeptidase inhibitor activity, 
regulation of necrotic cell death, integrin-mediated regulation of 
cell adhesion, peptidase-related regulation, a protein complex in-
volved in cell adhesion. These functions are essential in the de-
velopment of tumor [29-31]. The KEGG analysis showed that the 
DRlncRNAs were mainly concentrated in the lysosome, metabo-
lism of various sugars, regulation of actin cytoskeletons, and other 
signaling pathways. These pathways also play essential roles in the 
occurrence and development of glioma [32-34]. 

Nowadays, LncRNAs are gaining more attention from researchers. 
Multiple signaling and control functions have been proven to exist 
in LncRNAs, which may affect multiple aspects of tumor develop-
ment. The upregulation of various lncRNAs by gliomas has been 
confirmed, and these lncRNAs contribute to the proliferation and 
invasion of glioma cells, such as CRNDE and H1935. Further-
more, some lncRNAs are downregulated in Glioma, which may 
possess similar properties to tumor suppressor genes and inhibit 
tumor cell proliferation, promoting apoptosis, such as WDR11 and 
MEG336,37. 

In our study, our prognostic model also performed well in low-
grade gliomas, where we extended our research. Researchers found 
that patients with higher risk scores responded better to immune 
checkpoint blockade therapy than patients with lower risk scores 
based on an unsupervised subclass mapping analysis, implying 
that the risk score can also serve as an indicator of the response 
to immunotherapy. On the other hand, based on the DRlncRNAs, 
bioinformatics analysis revealed six candidate drugs with poten-
tial therapeutic efficacy for low and high-risk groups. With further 
subtype analysis, the number of drugs available is reduced by one. 
This indicates that the subtype classification based on differentia-
tion-related lncRNAs is more accurate in clinical application.

The current study had some drawbacks. Firstly, single-cell RNA-
seq data for LGG patients are unavailable in the GEO database, 
so DRlncRNAs mainly originate from HGG scRNA-seq data. It 
remained unclear what mechanism DRlncRNAs play in gliomas. 
Lastly, further validation of our findings required molecular and 
cellular biological experiments.

6. Conclusion
In conclusion, we verified that DRlncRNAs play a significant role 
in the occurrence and development of Glioma. The results of these 
studies added some valuable guidance to understanding glioma 
pathogenesis and treatment, and these DRlncRNAs may be used 
as biomarkers and therapeutic targets for glioma prevention.
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