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1. Abstract 
Hepatocellular carcinoma (HCC) usually occurs at the background 
of inflammation and cirrhosis. Due to the unique anatomic loca-
tion and the immunosuppressive environment of the liver, chronic 
inflammation causes intrahepatic cells death and elevated oxida-
tive stress levels, leading to the occurrence and development of 
HCC. In addition, the failure of immune system regulation and 
surveillance plays an important role in the development of HCC. 
In this review, we discuss the relationship between liver inflamma-
tion and HCC development, and illustrate how these factors trigger 
intrahepatic cells injury, proliferation, and ultimately the develop-
ment and maintenance of HC

2. Introduction
The liver is the sixth most common organ in the human body for 

primary cancer, and liver cancer is the fourth leading cause of can-
cer-related death worldwide [1]. Hepatocellular carcinoma (HCC) 
is the most common pathological type of primary liver cancer, 
accounting for 80-90%, followed by cholangiocarcinoma (CCA) 
accounting for 10-15%, and its incidence has an increasing trend. 
The less common liver malignancies include angiosarcoma and 
pediatric hepatoblastoma [2, 3]. The most important factor in the 
pathogenesis of HCC is liver-related chronic inflammatory dis-
ease, including chronic hepatitis virus infection, metabolically re-
lated inflammatory changes, and exposure to chronic toxins [4-6]. 
With the application of chronic hepatitis B virus vaccine and anti-
viral drugs, the incidence of chronic hepatitis virus hepatitis-relat-
ed liver cancer has been greatly reduced in the East Asian society 
[7, 8]. However, HCC induced by lifestyle factors such as chronic 
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alcohol consumption, high fat diet and sedentary behavior is in-
creasing, is especially common in Western societies [9, 10]. 

Due to the genetic diversity, metabolic complexity and hetero-
geneity of HCC, the most effective treatment is limited to local 
ablation, surgical resection, or liver transplantation at the early 
stage. For patients with advanced stage, the treatment outcome 
is still a great challenge [11]. In recent years, with the in-depth 
understanding of liver microenvironment and immune molecular 
signal network, new therapeutic strategies including immunother-
apy have been gradually applied to the treatment of HCC [12, 13]. 
Combining immune checkpoint blockade with other therapies has 
profoundly affected the treatment status of primary and secondary 
liver cancer [14]. 

In this review, we summarize the relationship between chronic 
inflammatory diseases and hepatocellular carcinoma, with special 
attention to the roles of cell death, oxidative stress, and immune 
microenvironment in shaping malignant transformation of hepat-
ocytes.

3. Liver Chronic Inflammation and Malignant Transfor-
mation
Tumor initiation process is that normal cells gain survival advan-
tages and gradually accumulate carcinogenic mutations [15]. Hep-
atitis virus infection, fatty acid-mediated lipotoxicity, exogenous 
toxins, and excess iron deposition induce the intrahepatic cells 
damage, including hepatocyte and hepatic sinusoidal endothelial 
cells [2]. Liver chronic inflammation and injury induce unique re-
generation and repair responses. This compensatory regeneration 
process helps to repair organ structure and maintain the function 
of liver [16-18]. However, proliferating cells are endowed with 
malignant potential as cells proliferate rapidly and oncogenic sig-
naling pathways are induced in an environment conducive to the 
accumulation of genetic mutations [19, 20]. 

Chronic liver inflammation is triggered and maintained when the 
liver is continuously exposed to stimulation from damaged intra-
hepatic cells, as well as gut microbes and related products. These 
stimuli are classified as damage-associated molecular patterns 
(DAMPs) and pathogen-associated molecular patterns (PAMPs). 
The DAMPs are mainly induced by the damaged intrahepatic cells, 
including excess dietary lipids, apoptotic cell DNA, heat shock 
proteins (HSPs), hyaluronic acid and mitochondrial DNA (mtD-
NA). The PAMPs include antigens from gut microbiome, such as 
lipopolysaccharide (LPS), flagellin, peptidoglycan, and bacterial 
DNA [21, 22]. In addition, factors such as alcohol consumption, 
high-calorie diets, or viral infections, are all external triggers that 
alter the composition of the intestinal microbiome, disturb the bal-
ance of the microbiome, increase the number of pathogenic bacte-
ria, and affect the barrier function of the intestinal mucosa, which 
can aggravate chronic liver inflammation [23].

Hepatocytes, Kupffer cells (KCs) and hepatic stellate cells (HSCs) 

express pattern recognition receptors (PRRS), including Toll-like 
receptors (TLRs), RIG-like receptors and NOD-like receptors, 
which can recognize DAMPs and PAMPs. Upon activation, it pro-
motes the release of pro-inflammatory cytokines such as IL-1β, IL-
6, and TNF-α, as well as chemokines such as MIP-1α and RANTE 
[24, 25]. Inflammatory mediators and DAMPS recruit platelets 
and immune cells, including pro-inflammatory monocytes, natu-
ral killer (NK) cells, neutrophils, and different types of T cells, 
accelerating the inflammatory response [26, 27]. In addition, the 
continuous repair of liver injury caused by chronic inflammation 
can activate hepatic stellate cells, leading to collagen deposition, 
fibrosis of the liver parenchyma and promote the occurrence of 
liver cirrhosis [9]. 

Chronic liver inflammation promotes the occurrence and develop-
ment of HCC [28]. The proinflammatory cytokine TNF-α secreted 
by KCs triggers tumorigenesis by activating Wnt/β-catenin signal-
ing and JNK signaling in the case of oxidative stress [29]. HCC can 
be induced by TNF-α mediated inflammation in the mouse model 
of Mdr2 (also known as Abcb4) knockout or diet induced obesity 
[30, 31]. Genes encoding lymphotoxin beta (LTβ), TNFSF14 and 
their targets CCL17 and CCL20 were overexpressed in human and 
mouse HCC tissues. Moreover, lymphotoxin activates the NF-κB 
signaling pathway, which promote the development of HCC [32]. 
Other inflammatory cytokines including IL-1β, IL-6, IL-11 and 
IL-23 are also involved in tumorigenesis [15]. Among these, IL-6 
is the most relevant factor in diethyl nitrosamine-induced HCC 
development and serves as a reliable marker for predicting the 
transition from viral hepatitis to HCC [31]. Enrichment of angi-
opoietin-2 (Ang-2), vascular endothelial growth factor (VEGF), 
CXC-chemokine ligand 1 (CXCL1) and CXCL8 can stimulate 
angiogenesis, which are important factors in liver tumorigenesis 
[15].

4. Cell Death Mediated Responses in Liver Inflammation 
and HCC
Hepatocytes death is accompanied by chronic liver diseases such 
as hepatitis virus infection, non-alcoholic steatohepatitis (NASH), 
cirrhosis, and other processes, mainly in the form of apoptosis or 
necrosis (33, 34). Intracellular toxic conditions, such as high levels 
of ROS, DNA damage, or replication stress due to depleted regen-
erative capacity, activate intrinsic apoptosis [35-37]. Activation of 
oncogenes and intercellular fusion induce hepatocyte senescence. 
Without the effective elimination of genetic and immune surveil-
lance systems, these senescent cells will transform into malignant 
cells [38]. Caspase 8 regulates chronic inflammatory induced cell 
death through catalytic cleavage function and acts as a scaffold 
for a multiprotein complex, independent of its catalytic domain, 
to achieve effective DNA damage repair. In preclinical models, 
complexes containing caspase 8 trigger γ-h2ax phosphorylation, 
controlling DNA integrity and thus potentially preventing malig-
nant transformation [34].
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Due to the destruction of intact cell membranes, dead liver cells 
release numerus injury-related molecular patterns. These “endoge-
nous antigens”, together with abnormal metabolites from biologi-
cal products, excess alcohol, and fatty acid catabolism, lead to the 
breakdown of balanced immune tolerance properties [39-41]. KCs 
respond by turning on pattern recognition receptor signaling and 
producing a wide range of pro-inflammatory cytokines (including 
IL-1, IL-6, and TNF) and chemokines (CCL1, CCL2, and CCL5) 
[39], leading to increased expression of cell adhesion molecules 
ICAM1 and VCAM1 in LSECs and downregulating of platelet/en-
dothelial cell adhesion molecule 1 (PECAM1), further recruiting 
monocytes, neutrophils, and platelets to the stressed sit [21]. Fol-
lowing activation of liver-resident innate immune cells, adaptive 
immune cells are recruited to the inflamed liver. The function of 
adaptive immune system in chronic hepatitis varies with pathology 
or diseases. Accumulation of CD4 T cells and CD8 T cells was de-
tected in liver tissue of mouse NASH models and NASH patients 
[42, 43]. Activated CD8 T cells release inflammatory cytokines 
that aggravate the progression of NASH, and inhibition of CD8 T 
cell activation prevents liver injury in NASH mouse models [21, 
44]. In the context of HBV infection, CD4 T cells have been iden-
tified as a major TNF producing population associated with liver 
injury [45].

5. Reactive Oxygen Species Mediated Responses in Liver 
Inflammation and HCC
Excessive consumption of high-calorie diet and alcohol disrupt the 
balance of lipid, carbohydrate, and protein metabolism in hepato-
cytes, leading to an unbalanced unfolded protein response and the 
release of lipotoxicity, accompanied with endoplasmic reticulum 
(ER) stress and mitochondrial dysfunction. For mitochondria and 
ER are the main sources of reactive oxygen species (ROS), these 
processes are associated with increasing ROS production and ox-
idative stress (OxS) [46, 47]. Sustained cell death and compensa-
tory proliferation induced by inflammation exacerbate ROS and 
OxS, which leads to DNA damage and gene mutation in liver [42, 
48, 49]. 8-oxo-7, 8-dihydro-20-deoxyguanosine (8-oxo-guano-
sine), and 8-nitroguanosine, which are induced by ROS, inhibit 
key enzymes in the DNA repair machinery, resulting in genomic 
instability(34). OxS regulates chronic liver inflammation by ac-
tivating NF-kB signaling pathway and c-Jun N-terminal kinase 
(JNK)/IKK/p38 MAPK signaling pathway [50]. TP53 mutations 
induced by OxS are most common in HCC, which induce mis-
match repair enzyme inactivation through remodeling epigenetics 
and hypermethylation of genes encoding mismatch repair proteins 
and tumor suppressors, initiating HCC [15, 51-53]. Activated im-
mune cells are also a source of ROS production. ROS induced 
T-cell protein tyrosine phosphatase (TCPTP) to activate STAT1 
and STAT3 signaling in NASH-induced HCC mouse model. 
STAT1 transcriptional activation up-regulates the expression of 
CXCL9 and lipoietin 2, recruiting neutrophils and T lymphocytes, 

and promoting liver inflammation. Activation of STAT3 drives 
malignant transformation of hepatic progenitor cells through the 
IL-6-STAT3 autocrine ring [54].

6. Innate Immune System Mediated Responses in Liver 
Inflammation and HCC
The immune system plays vital roles in protecting the normal phys-
iology of the liver. However, in chronic inflammation, adaptive 
and innate immune cells can be the driving force of liver damage 
and carcinogenesis [55, 56]. As the central organ of systemic me-
tabolism, the liver is continuously targeted by intestinal pathogens, 
microbial related molecular patterns, Toll-like receptors (such as 
TLR4 or TLR9) agonists, and a variety of metabolites. Although 
numerus immune cells subsets, such as NK cells and cytotoxic 
CD8+ T cells, play an important role in immune surveillance and 
anti-tumor immunity during the development and progression of 
HCC, however, several resident liver cell subsets, including Kup-
ffer cells (KCs), dendritic cells (DCs), regulatory T cells (Tregs), 
maintain liver immunosuppression, and this immune inhibitory 
environment influents the T cell-mediated immune response [6].

In the process of tumor immune evasion in HCC, KCs and oth-
er non-parenchymal cells (such as HSCs and LSECs) produce an 
immunosuppressive environment by secreting ligands that bind 
inhibitory receptors of effector T and NK cells, thus facilitating the 
establishment and progression of HCC. Recruitment, activation, 
and expansion of Tregs, myeloid-derived suppressor cells (MD-
SCs), and neutrophils, as well as tumor-associated macrophage 
(TAM) and programmed cell death protein 1 (PD-1) depleted T 
cells, create a tolerogenic immune environment against tumor cells 
[57, 58]. 

KCs are the largest population of tissue-resident macrophages, 
which are characterized by the expression of PD-L1, low levels of 
costimulatory molecules (CD80 and CD86) and the activation of 
Treg cells and are important factors for hepatic immune suppres-
sion. In nonalcoholic fatty liver disease (NAFLD), KCs participate 
in chronic inflammation by producing ROS and proinflammatory 
cytokines, and recruiting Ly6-C+ infiltrating monocytes, platelets 
[21]. Intestinal pathogens polarize KCs to an anti-inflammatory 
state and reduce the major histocompatibility complex (MHC) ex-
pression of LSECs to limit their immune activation ability [39]. 
Depletion of KCs in vivo abolished the induction of hepatic toler-
ance to particulate antigens [59]. The polarization of macrophages 
is extremely heterogeneous. In the tumor microenvironment, TAM 
have an immunosuppressive phenotype [60], and promote tumor 
progression through tissue remodeling, such as angiogenesis and 
damage repair [61, 62]. Inflammatory macrophages and infiltrat-
ing monocytes can induce an antitumor response [63]. HCC an-
titumor responses could be improved by promoting the M2 type 
polarization of TAM to M1 type proinflammatory macrophages, 
thereby promoting a proinflammatory response against cancer 
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cells [64]. Although pharmacological blockade of tumor-associat-
ed macrophage activity appears to improve the prognosis of HCC 
patients, effective and selective targeting of these cells remains 
challenging [60, 65, 66].

There are two mainly subtypes of DCs in liver: conventional DC 
and plasmacytoid derived DCs [67]. Plasmacytoid derived DCs is 
characterized by low responsiveness to toll-like receptors (TLR) 
stimulation and low expression level of co-stimulatory molecules, 
which promotes the liver immunosuppression [67]. Convention-
al DCs (human CD 141+ or mouse CD 103XCR1+) exhibited a 
proinflammatory immunophenotype with high MHC-II expression 
and features associated with promoting CD8+ T cells activation 
[68, 69]. DCs in the liver, compared with the DCs in the spleen or 
other tissues, have a stronger ability in producing IL-10 and weak-
er ability in activating T cells, which is characterized as “imma-
ture”, with the feature of down-regulating the level of MHC-II on 
the surface of monocytes, decreasing the antigen-presenting effect, 
and inhibiting the activation, migration and adhesion of inflamma-
tory cells [39, 70].

The liver resident NK cells play important roles in infection and 
tumor immune surveillance. In the mouse liver, NK cells can be 
divided into two populations: conventional NK cells (which do not 
express CD49a (α1 integrin) and DX5 (α2 integrin)) and liver-spe-
cific resident NK cells (which express CD49a but do not express 
DX5) [71]. Liver specificity resident NK cells is similar to classic 
memory cells, having the function of producing a large number of 
IFN-γ with cytotoxicity [72]. Although these cells can be activated 
by proinflammatory factors, they are usually maintained in a hy-
poreactive state, which is caused by the liver immunosuppressive 
environment [73]. In peripheral blood and tumor tissues of HCC 
patients, the infiltrating NK cell population was significantly de-
creased. For the reason of abnormal expression of KLRC1 and its 
ligand HLA-E, the function of NK cells in cytokine production and 
cytotoxicity was significantly impaired [2, 74]. Moreover, hemato-
poietic stem cells can reduce NK cell activity through extracellular 
matrix (ECM) remodeling and influence HCC development in the 
context of fibrosis [75]. In addition, NKT cells are one of the im-
portant sources of IFN γ, which can activate NK cells and inhibit 
tumor growth [2]. However, it has been confirmed that CD4+ NKT 
cells can secrete T helper 2 cytokines and inhibit the proliferation 
of CD8+ T cells under in vitro and in vivo conditions [76, 77]. 
Therefore, the role of NKT cells in chronic liver inflammation and 
hepatocarcinogenesis remains to be further studied.

7. Adaptive Immune System Mediated Responses in Liv-
er Inflammation and HCC 
Failure of adaptive immune system-mediated surveillance is one 
of important reason for the primary tumor development [20]. 
Generally, increased tumor infiltration of CD8+ T cells predicts 
improved clinical outcomes for HCC patients. However, HBV-in-
fected patients show accumulation of T reg cells in the liver, which 

with high risk of developing HCC [78-80]. Treg cells express 
high levels of CD25 (IL-2RA) and cytotoxic T-lymphocyte pro-
tein 4 (CTLA4) to compete with potential effector T cells for IL-2, 
CD80 and CD86 [81]. Treg cells also produce anti-inflammatory 
cytokines (TGFβ and IL-10) to maintain immunosuppressive fea-
tures. A significant increase in senescent hepatocytes can be de-
tected following antibody-mediated depletion of CD4+ T cells, in-
dicating that adaptive immune responses are critical in monitoring 
cells with cancerous potential [82]. It is found that the infiltration 
of CD4+CD25+FOXP3+ T cells is significantly increased in the 
tumor microenvironment of patients with HCC, and the prolifer-
ation and function of CD8+ T cells are impaired, which predicts 
poor prognosis [83-85]. Consistent with this, the proportion of 
T reg cells relative to cytotoxic T cells within the tumor has the 
potential to be an independent predictor of HCC recurrence and 
patient survival [86]. Notably, a group of CD8+ T cells with high 
KLRB1 expression was found in early relapsed HCC. Compared 
with well-characterized CD8+ T cells in primary HCC, this group 
of CD8+ T cells showed lower anti-tumor cytotoxicity, low clonal 
expansion ability, and was associated with poor prognosis [87]. 
Since NASH is described as a liver disease triggered by CD8+ T 
cells, there is a contradiction with the treatment of immunotherapy 
in NASH-driven HCC, indicating the etiologic dependence of im-
mune surveillance [88-90].

Recently, it has been found that 50% of cirrhosis patients and 60% 
of early-stage HCC patients have specific genetic signatures re-
lated to the immune system. These feature classes were divided 
into: hyperinvasive subtypes with increased numbers of effector 
T cells, immunosuppressive subtype with TGF-β signal activa-
tion and proinflammatory subtype with interferon (IFN)-γ sig-
nal upregulation. The immunosuppressive subtype was found in 
10% of patients with cirrhosis and were associated with a 2.4-fold 
increased risk of HCC development. The other two subtypes in 
the case of cirrhosis of the liver showed increasing trend of HCC. 
These specific immune features of cirrhosis have been identified as 
independent risk factors for predicting HCC [91, 92].

8. Other Non-Parenchymal Cells
HSCs promote immune tolerance orientation in the liver through 
the production of anti-inflammatory cytokines such as TGFβ, 
which activates signaling pathways related to liver regeneration 
and promotes differentiation of monocytes into myeloid suppres-
sor cells (MDSCs). MDSCs release immunosuppressive cytokines 
such as IL-10 and TGFβ and express arginase to suppress T cell 
proliferation [59, 93]. LSECs express PD-L1, pattern recognition 
receptors, and adhesion molecules such as intercellular adhesion 
molecule-1 and vascular cell adhesion molecule-1, mediating lym-
phocyte tissue infiltration and MHC I/II expression [6]. Insuffi-
cient expression of costimulatory molecules in LSECs after anti-
gen presentation leads to T cell anergy, which further emphasizes 
its important role in hepatic immunosuppressive polarization [94, 
95].
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9. Concluding Remarks
In recent years, great progress has been made in our understanding 
of the mechanisms underlying the development and progression of 
HCC. The theory that liver chronic inflammation as a major driver 
of HCC development has been widely accepted. Factors associ-
ated with the persistent tissue damage including OxS, increased 
DNA damage, and pro-inflammatory microenvironment resulting 
from cytokine production and cell death, as well as dysfunction-
al immune system surveillance, lead to the development of liv-
er cancer. Therefore, targeting and remodeling the inflammatory 
and immune microenvironment of liver, reversing the immuno-
suppressive environment of the liver, enhancing the infiltration 
of anti-tumor lymphocytes into the tumor, and re-establishing an 
effective immune surveillance and response to immune checkpoint 
blockade are the directions of future research.
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