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2. Keywords 

Each day the genome is subjected to thousands of DNA damaging events from diverse sources which 

can have potentially deleterious consequences. In order to maintain genome integrity eukaryotic cells 

have evolved a highly complex and multifaceted response network called the DNA damage response, 

or ‘DDR’. The DDR encompasses an intricate network of DNA damage sensor, transducer and effec- 

tor proteins which elegantly coordinate their activity with cycle progression. DNA damaging events 

DNA damage; Reactive Oxygen trigger lesion-specific responses to ensure accurate and non-deleterious repair. These responses must 

Species; Mismatch Repair 

 

 
3. Main Text 

occur in concert with chromatin rearrangement and cell cycle checkpoint activation, highlighting the 

complexity and fine balance of the DDR. This review focuses on the arsenal of lesion-specific repair 

mechanisms available to the cell and how the DDR harmonizes with the cell cycle and its checkpoints. 

products which all produce Ionizing Radiation (IR) [3, 7]. 

The transmission of genetic information from parent to daughter 

cells is a fundamental process of life, however this process must 

occur in the midst of a constant assault on the DNA from both 

endogenous and exogenous sources, and the number of lesions in- 

duced can surpass 10,000 each day [1-3]. In order to combat these 

events, the body has evolved a complex and varied response sys- 

tem, collectively termed the ‘DNA Damage Response’ (DDR). This 

intricate network is responsible for damage recognition, signalling 

and repair. A range of specialised pathways are activated depend- 

ing on the DNA lesion in question and these are highly conserved 

across species. It is critical that DNA lesions are dealt with appro- 

priately to mitigate mutagenic events which could cause cancerous 

transformation of the cell. 

4. Sources of DNA Damage 

The stability of DNA is challenged by a host of different biological 

factors which arise during normal cell function [4]. Problems aris- 

ing during DNA replication are one of the biggest contributors, for 

example it’s common for base mismatches to arise in S phase and 

DNA strand breaks are also likely due to aberrant activity of To- 

poisomerase I and II enzymes [3]. Furthermore, Reactive Oxygen 

Species (ROS) are formed daily as by-products of normal oxidative 

respiration and response to infection [5, 6]. ROS are highly dam- 

aging, introducing DNA adducts which cause further replication 

issues such as improper base pairing and replication fork stalling 

[3-5]. DNA damage can also arise from exogenous sources such as 

UV radiation from sunlight, remarkably this can induce in excess 

of 100,000 lesions per hour. Additional sources include naturally 

occurring radioactivity, chemotherapeutic agents, and tobacco 

DNA lesions are predominantly single stranded DNA breaks 

(SSBs), which are problematic, but the cell is accustomed to dealing 

with them swiftly. On the contrary, double stranded DNA breaks 

(DSBs) occur less frequently but are highly deleterious, often toxic, 

lesions which pose a more significant challenge for the cell’s repair 

machinery [1, 3, 8]. 

5. Dealing with Simple Lesions 

5.1. Direct Repair of DNA 

Certain base irregularities can be dealt with directly, without the 

need for excision from the DNA helix, the most common of which 

is base alkylation O6-methylguanine caused by simple alkylating 

agents [8,9]. The enzyme tasked with this is methylguanine DNA 

Methyltransferase (MGMT). MGMT, a small suicide protein, di- 

rectly reverses the DNA adduct by permanently transferring the 

wayward methyl group to a cysteine group located within the en- 

zyme’s own active site. MGMT will then disconnect from the repair 

site and is irrevocably inactivated, hence the term ‘suicide protein’ 
[8-10]. Subsequently, cells defective in MGMT are hypersensitive 

to alkylating agents [2]. 

Most damage must be repaired through indirect mechanisms in- 

volving sequential catalytic events performed by specialised pro- 

teins. There are at least five primary repair pathways available to 

the cell and these will be discussed in greater detail below. 

6. Indirect Repair of DNA Single Stranded Breaks 

6.1. Mismatch Repair Pathway 

The base Mismatch Repair (MMR) system is crucial for resolving 

simple base mismatches and insertion or deletion loops that arise 
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during DNA replication [3]. MMR is activated when MutSα and 
MutSβ (recognition factors) bind to the affected genomic region, 
this is followed by recruitment of MutL, which mediates pro- 

tein-protein interactions in an ATP-dependent manner at the site 

of mismatch. Next, the affected DNA strand is excised by exonu- 

clease-mediated degradation and the sequence is restored by DNA 

polymerase. Sealing of DNA nicks by DNA ligase enzymes con- 

cludes MMR [11]. MMR is summarised in (Figure 1A). 

6.2. Base Excision Repair 

The Base Excision Repair (BER) pathway is evolved to deal with 

spontaneous pre-mutagenic base distortions primarily arising 

from endogenous agents such as ROS and deamination [12]. In 

brief, BER is initiated when DNA glycosylase enzymes recognize 

the afflicted base and catalyse its hydrolytic removal. Left behind 

is an abasic site where an incision is made by nuclease enzymes, 

generating a larger gap known as a ‘repair patch’. Repair patches 

demonstrate significant heterogeneity in terms of their size and the 

proteins involved, these are termed ‘short patch’ or ‘long patch’ re- 

pair intermediates. The sequence homology is restored via repair 

synthesis by DNA polymerases and is concluded by the action of 

DNA ligase [12-15]. BER corrects relatively simple errors which 

have little to no impact on the structure of the DNA helix, therefore 

single base damage does not pose immediate threat to the genome 

if BER is functional (summarised in Figure 1B). 

6.3. Nucleotide Excision Repair 

The Nucleotide Excision Repair (NER) pathway is responsible for 

dealing with more complex lesions such as DNA adducts and In- 

ter/Intra-Strand Crosslinks (ICLs) which cause distortion of the 

DNA helix. Improper helix configuration can result in incorrect 

base pairing and impedes progression of the replication fork. This 

type of damage is mainly caused by exogeneous sources and NER 

represents the main pathway for resolution of Ultraviolet (UV)-in- 

duced damage [13, 14]. NER can operate via two distinct routes, 

transcription-coupled NER, which recognises DNA lesions dis- 

rupting the progression of RNA polymerases, and global-genome 

NER which surveys the entirety of the genome for helix disruptions 

[3, 16]. Briefly, NER begins with the recognition of the DNA lesion 

by a protein complex composed of XPA, RPA and XPC-hHR23B, 

although XPC-hHR23B is unessential for repair in the instance of 

transcription-coupled NER. Next, the DNA surrounding the site of 

damage is loosened, in an ATP-dependent fashion, reliant on Tran- 

scription Factor II H (TFIIH). NER differs from BER in that the 

damaged DNA is excised as part of a 22-32 base single-stranded 

oligonucleotide. Excision occurs via cleavage of the damaged DNA 

at its 3’ end by XPG and at its 5’ end by ERCC1-XPF. The resulting 

gap is filled by DNA synthesis catalysed by DNA polymerases δ 
and ε-holoenzyme, which are dependent on PCNA, and the gap is 

sealed by DNA ligase 8 [14, 16, 17]. Defects in NER are associated 

with hypersensitivity to UV radiation and are also responsible for 

diseases including xeroderma pigmentosum and Cockayne syn- 

drome [16]. The process of NER is summarised in Figure 1C. 
             

              

Figure 1: Mechanistic Pathways of Single Stranded Break Repair 

A. Mismatch repair resolves simple replication errors. MutSα and MutSβ recognise 
the lesion, and MutL is recruited to mediate protein interactions. Exonucleases ex- 
cise the error and DNA polymerase and ligase enzymes restore the strand. 
B. Base excision repair resolves base distortions by recruiting DNA glycosylases 
which recognize and excise the base. Nuclease enzymes act to create a ‘short’ or 
‘long’ repair patch which is then filled by DNA polymerase, and DNA ligase seals 
the strand. 
C. Nucleotide excision repair resolves helix-distorting lesions. These are recognised 
by XPA and RPA:XPC-hHR23B complex. The helix is loosened by TFIIH and a sin- 
gle stranded oligo is excised by XPG and ERC1-XPF. The gap is filled by DNA poly- 
merase dependent on the presence of PCNA, and the gap is sealed by DNA ligase. 

6.3.1. Dealing with Complex Lesions 

Indirect Repair of DNA Double Stranded Breaks 

DSBs arise naturally in some circumstances and are necessary  

for crucial biological processes including V(D)J and Class Switch 

Recombination (CSR) in immune system development. Howev- 

er, most DSBs arise from exogenous sources and are lethal if not 

correctly repaired [3]. In some circumstances, just one break can 

overwhelm the cell leading to apoptosis 18’. Most SSBs should be 

resolved by MMR, BER or NER, but those that escape their surveil- 

lance have the potential to potentiate to DSBs via collisions with 

replication machinery. Complex lesions require complex repair 

mechanisms, the mammalian cell possesses two, Non-Homolo- 

gous End-Joining (NHEJ) and Homologous Recombination (HR) 

[19, 20]. 

6.4. Non-Homologous End-Joining 

6.4.1. Classical Pathway: NHEJ is used by the cell much more fre- 

quently than HR, as it is available throughout the entirety of the cell 

cycle, in fact over 60% of DSBs induced by exogenous sources are 

repaired by NHEJ in mammalian cells [19, 21]. However, it repairs 
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DSBs through the direct ligation of the broken DNA ends, with 

little to no end processing preceding. Therefore, it’s often referred 

to as an ‘error prone’ mechanism of repair, resulting in sequence 

deletions [22]. NHEJ is essential to the cell with defects in pathway 

components including DNA Ligase IV resulting in embryonic le- 

thality in mice, and mutations in DNA-Dependent Protein Kinase 

(DNA-PK) have been shown to cause Severe Combined Immuno- 

deficiency (SCID) as well as hypersensitivity to IR [23-27]. NHEJ 

is a relatively simple repair mechanism with just a few key proteins 

required to resolve breaks. 

The process of end joining is initiated by the proteins Ku and the 

large 470kDa protein kinase DNA-PKcs, collectively forming the 

DNA-PK complex, a key player in NHEJ [28]. Ku is a heterodimer 

of the polypeptides Ku70 and Ku80 (70kDa and 80kDa respective- 

ly) which has a very high affinity for DNA ends, making it the first 

protein to bind. The toroidal structure of Ku promotes its load- 

ing at the break site, followed by signalling to DNA-PKcs [29, 30]. 

DNA-PKcs is the catalytic subunit of DNA-PK, upon its recruit- 

ment it will stabilise break ends and inhibit their resection. Upon 

contact with break ends the serine/threonine kinase activity of 

DNA-PKcs is activated, promoting its autophosphorylation at the 

six-residue cluster of T2609, this leads to a conformational change 

in the protein, destabilizing its binding to DNA and increasing 

accessibility for additional repair factors at the break site. Further 

autophosphorylation at the five- residue S2056 cluster helps to lim- 

it unnecessary processing of break ends [30-32]. These phosphor- 

ylation events serve further purposes with T2609P important for 

promoting repair by HR when NHEJ fails and S2056 P is necessary 

for inhibition of HR by preventing break resection [30-33]. 

The concomitant assembly of the Ku heterodimer and DNA-PKcs 

at breaks is followed by the recruitment of XRCC4 and DNA Li- 

gase IV (XRCC4:LIG4) which is responsible for ligating the broken 

ends, concluding NHEJ [28, 32, 34]. XRCC4 and LIG4 are tightly 

complexed and work interdependently, although XRCC4 is crucial 

for the stabilization of LIG4 and for increasing its ability to ligate 

DSB ends. The protein XLF is also required at this stage to enhance 

the ligation of breaks by XRCC4:LIG4 in the presence of the bio- 

logical Mg2+ gradient [35]. Since homology is not a pre-requisite 

for NHEJ repair, the high degree of flexibility of XRCC4:LIG4 is 

important; the complex can perform strand ligation independent 

of the second strand in the break, it can seal breaks across nucle- 

otide gaps and is also capable of gluing incompatible DNA ends 

[36]. 

Limited processing of break ends may be carried out by the protein 

Artemis when DSBs are otherwise irreparable. Artemis is an endo- 

nuclease enzyme which, upon interaction with, is phosphorylated 

by DNA-PKcs in an ATP-dependent manner. This event confers 

an endonucleolytic activity to Artemis, promoting the trimming of 

5’ and 3’ DSB overhangs [30, 32, 37]. The entirety of the classical 

 
NHEJ response is summarised in Figure 2A. 

6.4.2. Alternative Pathway: Many studies have now demonstrat- 

ed that there are mechanistically distinct sub-pathways of NHEJ 

which operate in the absence of classical end-joining repair factors. 

These include, but are most likely not limited to, alternative-NHEJ 

(alt-NHEJ) and microhomology-mediated end-joining (MMEJ) 

[38-42]. MMEJ is often used interchangeably with alt-NHEJ to 

refer to non-classical end-joining, although several studies have 

shown there are distinct differences in their modes of repair [41, 

42]. 

Alt-NHEJ was discovered through studies of repair in cells de- 

fective for classical-NHEJ (c-NHEJ) and it is used primarily as a 

fail-safe repair mechanism [43]. However, the kinetics of repair are 

slower via alt-NHEJ and it has been associated with an increased 

frequency of deletions, inversions and gross chromosomal rear- 

rangements [44, 45]. With this in mind, it has been proposed that 

alt-NHEJ is distinct from c-NHEJ in three key aspects: it occurs in 

cells defective for c-NHEJ components, it is highly error-prone and 

it typically occurs at break junctions displaying excessive deletions 

and microhomology [39]. 

The precise mechanisms of alt-NHEJ are not well characterised, 

but several groups have offered preliminary mechanistic models 

for this back-up repair system. It is believed that repair is initi- 

ated via a Poly(ADP-Ribose)Polymerase 1 (PARP1) dependent 

mechanism which requires the absence of Ku proteins, but not 

necessarily DNA-PKcs [46]. The Ku heterodimer may also com- 

pete with PARP1 for end binding, directing repair towards either 

c-NHEJ or alt-NHEJ [47]. Annealing of PARP1 to DNA is thought 

to be favoured in alt-NHEJ due to the presence of larger regions 

of microhomology at break ends [41]. It’s then proposed that the 

Mre11-Rad50-NBS1 (MRN) complex is recruited to the break, and 

in concert with transcription factor CtIP DNA ends are resected 

[39]. The end resection properties of MRN are of importance in 

the search for homology at these DSBs, and the subsequent action 

of DNA Ligases I and III (LIGI/LIGIII) are then required to seal 

the DNA [39-42, 48]. Figure 2B summarises the alt-NHEJ pathway. 

6.5. Homologous Recombination 

Unlike NHEJ, the HR pathway is high-fidelity, promoting error 

free repair via the use of a homologous sister chromatid repair tem- 

plate [49]. The requirement for a homologous template means that 

HR is isolated to S and G2 phases of the cell cycle when DNA has 

been replicated. HR has several sub-pathways, but each is always 

instigated by the generation of ssDNA, and all are characterised by 

homology search and invasion of the template strand [3, 21, 50]. 

One sub-pathway is Single-Strand Annealing (SSA), which repairs 

DSBs via ligation of complementary DNA sequences lying on both 

sides of the lesion [49]. 

The first step in HR is to clean up the ends of the DSB by nucleolytic 
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resection in the 5’ to 3’ direction [49-51]. This is carried out by the 

MRN complex, which is also employed in NHEJ. Each component 

of MRN serves a different purpose, Mre11 has an inherent endo- 

nuclease activity, as well as 3’ to 5’ exonuclease activity, RAD50 is 

believed to promote the unwinding of DNA through its ATPase ac- 

tion and Nbs1 may be important for relaying signals from damage 

sensors to the MRN complex [52, 53]. To aid with break resection 

BRCA1 and CtIP are also recruited [54]. BRCA1 binds CtIP via its 

BRCT domains located at the C terminus of the protein which pro- 

motes the binding of BRCA1 to MRN, whilst CtIP also binds Nbs1 

directly. The MRN: BRCA1: CtIP complex forms in a cell-cycle de- 

pendent manner, requiring the activity of CDKs. Therefore, this 

complex may be important for initiation of DSB repair by HR [55]. 

Resection of the DSB generates a 3’ ssDNA overhang. ssDNA in 

any capacity is highly unstable and is quickly bound by two pro- 

teins, RAD52 which binds at ssDNA ends, and Replication Protein 

A (RPA), which binds the ssDNA overhangs [56-59]. The defin- 

ing step of HR is strand invasion, catalysed by the RAD51 pro- 

tein (mammalian homolog of yeast RecA) [50]. RPA binds with 

high-affinity, whereas RAD51 has a low-affinity for ssDNA, there- 

fore RAD51 must compete for the binding of 3’ overhangs [60]. 
RAD51 paralogs RAD51B, RAD51C, RAD51D and XRCC2 are re- 

cruited to promote the displacement of RPA and loading of RAD51 

[61, 62]. Another protein crucial to this process is the breast cancer 

associated gene, BRCA2 which directly binds RAD51 via a series of 

internal BRCT repeats [54, 63]. 

Once loaded, RAD51 forms a nucleoprotein filament which in- 

vades the homologous repair template, and BRCA2 performs the 

unique function of directing nucleofilament formation to the junc- 

tion where ssDNA meets dsDNA at the resected break [50, 61]. 

Sister chromatids are preferentially used as templates because al- 

though homologous chromosomes can be used, repair this way 

would result in loss of heterozygosity [64, 65]. When the search 

for sequence homology has concluded RAD51 catalyses strand ex- 

change with the help of RAD51 paralogs, displacing one strand to 

form a displacement loop (D-loop) [61, 66]. DNA synthesis is then 

initiated by a DNA polymerase enzyme which extends the 3’ end of 

the invading filament [50, 61, 67]. The second 3’ overhang can then 

anneal, initiating further strand synthesis, in a process known as 

second-end capture [68]. The result is a four-way complex joined 

by two Holliday Junctions (HJ) which are duplexes of homologous 

DNA, formed through strand exchange [50, 69, 70]. Double HJs 

(dHJs) are primarily resolved through the action of BLM heli- 

case-TopoisomeraseIIIα-RMI1-RMI2 (BTR) complex [71]. BTR 

catalyses the dissolution of dHJs and suppresses further crossover 

events [72]. Any HJs which escape resolution by BTR will be acted 

on by HJ resolvase enzymes (GEN1 and MUS81-EME1) at a later 

stage in the cell cycle [71-74]. An additional route of break reso- 

lution following D-loop formation is Synthesis-Dependent Strand 

Annealing (SDSA). The 3’ invading strand detaches following ex- 

tension and synthesis and is subsequently ligated by DNA Ligase I 

with the second end of the break to exclusively form non-crossover 

products [75, 76]. The new sequence has homology to the repair 

partner and in this way strand integrity is restored. In human cells, 

the product of break resolution by HR will rarely be cross-over 

events, as this would result in loss of heterozygosity and could be 
 

 
Figure 2: Mechanistic Pathways of DNA Double Stranded Break Repair 

A. Classical NHEJ - a low-fidelity DSB repair mechanism available throughout the entire-   
ty of the cell cycle. In response to breaks the Ku70/80 heterodimer is recruited, followed by 
DNA-PKcs. The end-processing enzyme Artemis may be recruited if so required. The action of 
XRCC4, XLF and DNA Lig4 leads to joining of break ends and sealing of the lesion, completing 
the repair process. 
B. Alternative NHEJ - acts in the absence of functional cNHEJ components. In response to 
damage PARP1 is recruited, followed by MRN and CtIP which act in concert to resect break 
ends. It’s believed that the dual action of DNA Ligase 1/3 leads to sealing of the DSB. 
C. Homologous Recombination - simplified schematic of high-fidelity repair. MRN is recruited 
to resect break ends, these are quickly bound by RPA and RAD52. RPA is displaced by RAD51 
with the aid of BRAC1/2 and RAD51 paralogs. A sister chromatid is used as the template for 
strand invasion and DNA synthesis. Holiday junction resolution terminates the HR repair. 

mutagenic [73]. The molecular events of HR are summarised in 

Figure 2C. 

7. Regulation of Repair Pathway Choice 

With two key mechanisms available to repair DSBs, how does  

the cell decide which path to take? Studies performed in hamster 

cells demonstrated that enzymatically induced breaks are directed 

towards HR for repair in 10-50% cases [77], whereas research in 

human glioblastoma cells has shown that I-SceI induced DSBs are 

repaired by HR just 10% of the time [70]. This would indicate that 

NHEJ is the primary repair pathway in mitotically replicating cells, 

which is indeed the opinion within the wider field [78]. Howev- 

er, as previously discussed, HR performs error-free repair which 

is crucial to prevent propagation of damaged genetic information. 

Therefore, it’s believed that HR is the desired repair pathway during 

DNA replication65. Indeed, cells defective for BRCA1, a protein 

crucial to HR repair, are sensitive to IR-induced damage, indicat- 

ing that HR is required to process complex lesions [79]. 

The choice between NHEJ and HR is also heavily regulated by the 

cell cycle [80]. Given that HR requires a homologous template for 

repair it is active at two specific stages, late S and G2, when replica- 

tion has occurred, and a sister chromatid can be used [49]. Howev- 

er, NHEJ remains active throughout S and G2 indicating that there 

is competition for the DSB by both repair mechanisms. 

The resection of DSB ends 5’ to 3’ can directly dictate the use of HR 
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over NHEJ as only HR can be employed once the break is resect- 

ed and RPA binds [81]. Therefore, the resection of breaks must be 

tightly regulated to prevent erroneous attempts at repair by NHEJ. 

Resection is inhibited in G1 of the cell cycle by the binding of p53 

binding protein 1 (53BP1) at chromatin surrounding the DSB, and 

this inhibition is later relieved in G2 by association of 53BP1 and 

BRCA1 [82]. In G2, the enlistment of BRCA1 to breaks leads to the 

phosphorylation and subsequent activation of CtIP, thus recruiting 

BRCA2 [83]. This requires the action of associated proteins PALB2, 

CRL3KEAP1 and USP11 [81]. The activity of CDK1 is required to 

promote HR as it phosphorylates several key HR proteins, addi- 

tionally, CDK1 activity is downregulated in G1, efficiently inhibit- 

ing the onset of HR [70, 81]. 

An additional level of regulation occurs in S phase, allowing the 

distinction of DSBs in replicating from non-replicating DNA in the 

cell [81]. In the G1 phase of the cell cycle DNA has not yet been 

replicated and so the chromatin expresses a specific methylation 

mark on the histone H4 (H4K20me2), during S phase replication 

this methylation is lost (H4K20me0). TONSL, a protein involved 

in the repair or stalled/collapsed replication forks, is then capable 

of binding H4K20me0, it will complex with its binding partner 

MMS22L, and HR is instigated. When methylated, TONSL will not 

bind, but 53BP1 is recruited in its place, inhibiting HR [84]. 

Additional levels of regulation are provided by the upregulation of 

central HR proteins RAD51 and RAD52 during S and G2 phases 

of the cell cycle [85]. Additionally, a recent publication proposed 

that a protein called CYREN (cell cycle regulator of NHEJ) is re- 

sponsible for promoting HR by binding to and inhibiting the Ku 

heterodimer [86]. Furthermore, NHEJ is downregulated during S 

phase demonstrated by the reduced phosphorylation of DNA-PKcs 

in cells which have been irradiated, therefore shunting the cells to- 

wards HR [87]. Therefore, there are a multitude of mechanisms the 

cell employs to control repair pathway choice which are heavily de- 

pendent on the cell cycle. 

8. Sensors, Transducers and Effectors of the DNA Damage 

Response 

8.1. Damage Sensors 

Having discussed how DNA lesions are repaired by the cell, it’s 
necessary to define how the cell is initially alerted to their pres- 

ence. Mammalian cells possess an evolutionary conserved signal- 

ling mechanism which stimulates a coordinated response of DNA 

damage repair and cell cycle checkpoint activation. This network is 

proposed to function via the recognition of DNA breaks by dam- 

age sensors, this signal is then relayed to damage transducers, and 

these proteins will then signal through damage effectors to initiate 

either repair, transcription, cell cycle arrest or cell death [88, 89]. 

DNA damage sensors are poorly defined and there is much con- 

test around the proposed sensor proteins. The role of the damage 

sensor is as the name suggests, to identify DNA lesions and kick- 

start the signalling network. In a 2003 publication, Petrini and 

colleagues outlined four criteria to be filled in order to classify a 

protein as a damage sensor [88]: 

1. Upon recognition, the sensor protein should physically 

associate with damaged DNA. 

2. The sensor protein should possess the innate ability to as- 

sociate with damaged DNA without the need for an acti- 

vation modification such as phosphorylation. 

3. Mutations of the sensor protein, or conditions which im- 

pair its association with damaged DNA, should mar the 

activation of downstream cell cycle checkpoints. 

4. It should thus be possible to identify so called ‘up-mu- 

tants’, i.e. mutated genes encoding sensor proteins will 

lead to constitutive signalling in the absence of damage. 

Very few proteins meet some or all these criteria. The proteins 

which have been suggested as sensors include the MRN complex 

[90] and PCNA-like proteins [89]. The MRN complex is involved 

in the early steps of both NHEJ and HR repair of DNA damage [39, 

52], but in its capacity as a break sensor it is responsible for binding 

the damaged chromatin and recruiting Ataxia-Telangiectasia-Mu- 

tated (ATM) which can then initiate downstream signalling [88- 

92]. The second group of damage sensors are the PCNA-like pro- 

teins RAD1, RAD9 and Hus1, which are collectively termed 911 

[89, 91, 93]. As previously discussed, ssDNA forms during resec- 

tion of DSBs and is quickly bound by RPA [60], this ssDNA: RPA 

complex is required to recruit the protein ATM- and Rad3-Related 

(ATR) and its regulatory subunit ATRIP, as well as RAD17 [91]. 

Once at the site of the break, ATR-ATRIP and RAD17 initiate the 

loading of 911, this leads to the phosphorylation of RAD17, 911 

and TopBP1, which binds 911, by ATR kinase. This in turn will 

promote ATR’s kinase activity [89, 91, 92, 94]. 

8.2. Damage Transducers 

Once the cell is alerted to the presence of damage, it will signal 

through its master transducers, ATM and ATR, as well as DNA- 

PKcs, although this complex is primarily required to initiate NHEJ 

[94]. These proteins are members of the phosphatidylinositol-3-ki- 

nase-like kinase (PI3K) family which are responsible for activating 

a vast array of downstream proteins at Serine/Threonine residues 

via phosphorylation [94, 95]. ATM and ATR share structural sim- 

ilarity and are both activated by autophosphorylation in response 

to DNA damage, however they differ in that ATM is primarily ac- 

tivated by DSBs, whereas ATR responds to a diverse range of dam- 

age including DSBs [95]. ATM is mutated in a disease known as 

AT (ataxia telangiectasia) which is characterised by chromosomal 

instability [96]. In contrast no diseases have been linked to ATR 
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mutations, although studies of mammalian cells which express a 

dominant-negative ATR show sensitivity to DNA damage and im- 

paired checkpoint function [97]. 

Both ATM and ATR share downstream substrates including p53 

[98, 99] which is phosphorylated at the same residues by both pro- 

teins, but they also have independent targets [100]. One objective 

of activated ATM and ATR is to initiate DNA damage repair via 

NHEJ and HR. ATM is responsible for controlling the response to 

DSBs induced by IR whilst ATR acts to trigger repair of damage in- 

duced by a wide variety of sources e.g. UV and Hydroxyurea (HU) 

[89, 101]. To trigger HR repair, the MRN complex first localises to 

damaged DNA, acting in a damage sensor capacity, this is followed 

by ATM recruitment and activation which in turn leads to phos- 

phorylation of MRN by ATM as Nbs1 directly binds the kinase [94, 

102]. Subsequently, the repair cascade is activated. 

Although ATR can act to repair DSBs, its recruitment and acti- 

vation are mediated in a different way to ATM. It appears that its 

recruitment is dependent upon its interaction with ATRIP, and fur- 

thermore it requires ssDNA: RPA complexes to localise [103]. Fur- 

thermore, ssDNA produced by resection not only activates ATR, 

but it causes the progressive exchange of ATM for ATR activation 

at DSB sites [94]. This switch allows for the coordinated activity of 

ATM and ATR, eliciting activation of their individual downstream 

targets in a sequential manner [104]. In addition to triggering DSB 

repair, ATM and ATR have many substrates, or damage transduc- 

ers, which are responsible for activating the cell cycle checkpoint 

mechanisms, and this will be addressed later in the text. The DNA 

damage response is a vast and integrated signalling network and its 

structure is summarised in Figure 3. 
 

 
Figure 3: The DNA Damage Response Network 

The DDR can be summarised as a vast signalling network comprised of damage sensors, which 
then signal to transducers, followed by signalling to effector proteins which trigger many cel- 
lular responses. 

9. The Cell Cycle and its Checkpoints 

9.1. Organisation of the Cell Cycle 

The accurate replication of the genetic code is governed by a high- 

ly regulated sequence of events which are evolutionary conserved, 

this is collectively termed ‘The Cell Cycle’ (Figure 4) [105]. The 

canonical model of the cell cycle is comprised of four individual 

phases, G1, S, G2 and M, which each represent a different stage of 

the DNA replication process [106]. G1, S and G2 collectively form 

interphase, in which G1 and G2 are ‘gap phases’ where the cell pre- 

pares for DNA replication and prepares for division respectively. S 

phase, or synthesis phase, is when the entirety of a cell’s genetic in- 

formation is duplicated in preparation for division into two daugh- 

ter cells. If a cell decides that it’s not in a ready position to proceed 

with replication it can enter a phase known as G0 before it commits 

to G1, this is a ‘resting phase’ and is where many non-proliferative 

cells reside. M phase, or mitotic phase, can be further subdivid- 

ed into prophase, metaphase, anaphase and telophase, in which 

the cell accurately segregates its duplicated information into two 

daughter cells [107, 108]. 
 

     
 

Figure 4: The Mammalian Cell Cycle 

The cell cycle is composed of four sequential phases G1, S, G2 and M which culminate in the di- 
vision of the parent cell into two daughter cells. The progression through interphase and mitosis 
is regulated by complexes of CDKs and cyclins. 

9.2. Regulation of Cell Cycle Progression 

The progression of a cell through the various cycle stages is under 

the control of CDK proteins. CDKs are large serine/threonine ki- 

nases which are responsible for phosphorylating downstream pro- 

teins to initiate further cellular functions [107]. There are four key 

CDKs (CDK1, CDK2, CDK4 and CDK6) which are activated at 

specific points in the cell cycle by activator proteins called cyclins. 

Certain cyclins will bind to and activate certain kinases, and this is 

summarised in (Table 1) [107, 109]. 

The levels of CDK proteins remain stable throughout the cell cycle, 

but the cyclin levels fluctuate, thereby controlling which CDKs are 

active at any one time. CDK activity is inactivated in a number  

of ways: cyclins are targeted for degradation by ubiquitination at 

the end of their cycle phase, CDK1 is inactivated via inhibitory 

phosphorylation by Wee1 and Myt1 kinases, and finally, binding 

of CDK inhibitory proteins to the CDKs or CDK: cyclin complexes 

controls their activity [107, 109]. The CDK7: Cyclin H complex, 
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also known as CAK, does not behave as the others do, it is ac- 

tive throughout the entirety of the cell cycle and is required for the 

complete activation of CDK1 [107]. 

Table 1: CDKs, their Cyclin Partners and their Activity Throughout the Cell Cycle 

CDKs are bound by cyclin proteins which activate them and allow the progression of cells 
through the various cell cycle phases. 

 

 

9.3. Cell Cycle Checkpoints 

To ensure that the cell cycle is completed, and DNA is replicated 

and passed on without error the cell has evolved a highly conserved 

surveillance system known as cell cycle checkpoints [110]. The sig- 

nificance of these checkpoint mechanisms is highlighted by the fact 

that many proteins involved in checkpoint activation are tumour 

suppressors, whose loss leads to cancer [111]. It is the responsibil- 

ity of the checkpoint network to identify DNA damage and struc- 

tural abnormalities, render these stimuli into signals and transduce 

the signals to downstream effector proteins which can coordinate 

a repair response. Furthermore, the checkpoint proteins must or- 

chestrate the repair response in harmony with cell cycle progres- 

sion to prevent the transmission of faulty genetic information to 

daughter cells [112]. The typical effects of cell cycle checkpoint ac- 

tivation include the slowing, or halting of cell cycle progression to 

allow time for DNA damage repair to occur, prior to mitosis [107, 

112]. The checkpoints activated in response to DNA lesions lie at 

the G1/S boundary before DNA is replicated, during S (intra-S), 

and at the G2/M boundary before cell division [107]. 

As described previously in the text, the DDR is a complex signal- 

ling network composed of damage sensors, transducers and effec- 

tors. The key transducer proteins are ATM and ATR kinases which 

activate a myriad of damage effector proteins via phosphorylation 

modifications89. Therefore, ATM and ATR are responsible for ini- 

tiating cell cycle checkpoints and do so through activation of two 

key proteins, Checkpoint Kinase 2 (CHK2) and Checkpoint Kinase 

1 (CHK1) respectively [111-113]. The axis chosen depends on the 

nature of the DNA damage, the ATM-CHK2 branch will primar- 

ily respond to IR-induced DNA damage, whilst the ATR-CHK1 is 

called upon mainly for UV-induced damage and DNA replication 

stress [111, 113, 114]. 

An important and well characterised substrate of ATM and ATR 

is the tumour suppressor p53, which is phosphorylated at several 

residues in response to DNA damage [115]. MDM2, an oncogene, 

is a key regulator of p53 in vivo, binding to and targeting it for 

degradation at the proteasome via ubiquitination [116]. The tran- 

scription of MDM2 is also initiated by p53, hence establishing a 

negative feedback loop [117]. In response to damage p53 is stabi- 

lised by the dissociation of MDM2, owing to the phosphorylation 

of p53 at distinct residues [116, 117]. The successful activation of 

the G1/S checkpoint is dependent upon p53 [118], and the molec- 

ular mechanisms of this pathway will be examined below. 

9.4. The G1/S Checkpoint 

At the G1/S checkpoint cells are examined to ensure that they meet 

the necessary requirements to commit to progression through 

DNA synthesis [113]. The presence of DNA damage or replica- 

tion stress activate the checkpoint if required. p53 mediates G1/S 

activation, and its absence results in complete abrogation of the 

checkpoint [119]. In response to IR-induced damage, p53 is stabi- 

lised by MDM2 removal and rapidly accumulates in the cell [116]. 

p53 is phosphorylated by the ATM kinase at the serine 15 residue 

located within its amino-terminal transactivating  domain  [99]. 

In the absence of ATM, ATR serves as a back-up kinase and can 

phosphorylate p53 at ser15, furthermore it has been shown ATR 

may be required to maintain a sustained phosphorylation of p53 

[120]. One key protein which is transcriptionally activated by p53 

is the CDK inhibitor p21. Upregulation of p21 leads to inhibition 

of the CDK2: cyclin E/A activity, thereby preventing the G1 to S 

phase transition [111, 112, 115]. In addition to phosphorylating 

p53, ATM phosphorylates the CHK2 kinase at the threonine 68 

residue [121, 122], and subsequently CHK2 phosphorylates p53 at 

the ser20 residue123. This phosphorylation event further enhances 

the accumulation of p53 by directly preventing MDM2 and p53 as- 

sociation [112]. Activated CHK2 is also responsible for phosphor- 

ylation of the CDC25A protein on its ser123 residue [124]. Under 

normal circumstances CDC25A is responsible for activation of 

CDK2 which is instrumental in S phase progression, therefore deg- 

radation of CDC25A by CHK2-mediated phosphorylation leads to 

CDK2 inhibition and G1/S checkpoint activation [107, 124]. Inter- 

estingly, the ATM-CHK2-CDC25A G1/S activation occurs faster 

than p53-mediated activation, which requires the build-up of new- 

ly transcribed proteins. In this way, CDC25A degradation leads to 

a quick but shorter activation of the G1/S checkpoint, and if re- 

quired the p53 branch can promote its sustained activation [111]. 

For cells which have sustained irreparable DNA damage, they can 

be targeted for death via the transcriptional activation of apoptotic 

proteins by p53 [117]. 

9.5. The Intra-S Checkpoint 

The intra-S phase checkpoint is critical for slowing the rate of 

DNA synthesis to allow time for repair of DNA damage, primar- 

ily through HR86, [111]. There are three distinct mechanisms of 
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intra-S activation which culminate in the inhibition of new ori- 

gin firing and prevention of strand elongation at active replication 

origins [111, 112, 125]. Firstly, as previously discussed, inhibitory 

phosphorylation of CDC25A targets it for ubiquitin-mediated pro- 

teasomal degradation, thereby preventing CDK2: cyclin A activity, 

and inhibiting S phase progression [107, 124]. Secondly, during 

DNA replication the cell division control protein 45 (CDC45) is 

loaded onto DNA in a CHK2-dependent manner and it recruits 

DNA polα to pre-replication complexes [126, 127]. Therefore, the 

inhibition of CHK2 allows transiently slows DNA synthesis by the 

suppression of new origin firing. Finally, another route of S-phase 

checkpoint activation is via the NBS1 protein, a component of 

MRN. In response to IR ATM is recruited to the site of DSBs in an 

NBS1 and BRCA1 dependent manner, both are phosphorylated by 

ATM and this promotes the phosphorylation of SMC1 at ser957 

and ser966. The phosphorylation of Cohesin component SMC1  

is critical for the activation of the intra-S checkpoint, evidenced 

by the abrogation of the checkpoint in SMC1 knockout cells [128, 

129]. 

9.6. The G2/M Checkpoint 

The G2/M checkpoint monitors cells for the presence of DNA 

damage before they divide to produce daughter cells, and there- 

fore it’s crucial to prevent erroneous genetic code being passed on 

[112]. For a cell to qualify for entry to M phase the CDK1: cyclin 

B complex must be active which requires reversal of the inhibi- 

tory phosphorylation at threonine residues 14 and 15, imparted  

by the Wee1 and Myt1 kinases [107, 109]. These modifications are 

removed from CDK1 through the action of CDC25C phosphatase, 

thereby promoting entry into mitosis [113, 130]. 

In response to DNA damage induced during S phase the G2/M 

checkpoint is activated via the phosphorylation of CHK1 and 

CHK2 by ATR and ATM respectively. Unlike the G1 checkpoint, 

G2/M is dependent upon the action of ATR for activation, whereas 

ATM is dispensable, apart from when the checkpoint is triggered 

by damage that occurs during the G2 phase itself [112]. This high- 

lights the critical crosstalk between ATM and ATR in the initiation 

of the DDR and checkpoint mechanisms. The G2/M checkpoint 

is activated by the dual action of CHK1 and CHK2 which phos- 

phorylate CDC25C on it ser216 residue [131]. Phosphorylation of 

CDC25C creates a binding site for 14-3-3 proteins, the transcrip- 

tion and accumulation of which is p53 dependent, this leads to the 

sequestration of CDC25C in the cytoplasm, preventing the activa- 

tion of CDK1 thereby blocking mitosis [130, 131]. Furthermore, 

p53 is responsible for the accumulation of p21 protein which has 

also been shown to promote arrest of damaged cells in G2/M, pro- 

viding a further means of checkpoint regulation [132]. 

Cell cycle checkpoints are critical to allow for DNA repair in a 

manner coordinated intimately with the progression of the cell cy- 

cle, this is summarised in Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: The Cell Cycle Checkpoint Response 

In response to DNA damage the cell activates the DDR, a component of which is the cell cycle 

checkpoint response. ATM is the primary coordinator of the response, phosphorylating CHK2 

which can then relay the signal further through its downstream targets to activate the G1/S 

and intra-S phase checkpoints. G1/S activation is P53 dependent. G2/M checkpoint activation, 

unlike G1/S and intra-S is mainly reliant on the ATR-CHK1 axis, although ATM can also play a 

role when damage is incurred during G2 itself [112]. 

10. Exploiting DNA Repair Deficiency in Cancer Therapy 

As previously discussed, functional DDR pathways are crucial for 

maintaining genome stability. Defective repair results in the accu- 

mulation of genetic mutations as well as chromosomal aberrations 

and this can lead to cancer development. Furthermore, defects    

in DDR are the cause of a number of human diseases including 

Ataxia-Telangiectasia (A-T), Fanconi Anaemia, and Li-Fraumeni 

syndrome caused by an ATM mutation, inefficient repair of DNA 

crosslinks and a p53 mutation respectively [133–135]. Traditional- 

ly, cancer treatment has involved the use of DNA-damaging che- 

motherapeutic drugs, as well as damage-inducing radiotherapy. 

These strategies take advantage of the inherent genomic instability 

of cancer cells by overwhelming them with damage that they will 

struggle to repair, hence targeting them for apoptotic cell death. In 

recent years, the concept of exploiting synthetic lethality to treat 

cancer patients with mutations in DNA repair proteins has gained 

traction. This review will focus on the use of PARP inhibitors 

(PARPi) in cancer therapy, although many inhibitors of other DNA 

repair proteins are now available. 

Synthetic lethality is a term used to describe a state where a muta- 

tion in one of two given genes permits cell viability, but mutation 

of both genes results in cell lethality. Perhaps the most pertinent 

demonstration of this phenomenon relates to the synthetic lethal 

interaction observed between HR proteins BRCA1 and BRCA2, 

and PARP1 proteins. Poly (ADP-ribose) polymerase 1 (PARP1) is a 

nuclear protein that functions in both the repair of SSBs and DSBs 

by catalysing the addition of a poly (ADP-ribose) chain to target 
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proteins, known as PARylation, which ultimately leads to the re- 

cruitment of other DNA repair factors. PARP1 eventually imparts 

the PARylation post-translational modification upon itself, leading 

to its dissociation from repaired breaks [136-138]. The mechanism 

of action of PARPi’s is summarised in Figure 6. 

Bryant et al. and Farmer et al. both published data in 2005 illus- 

trating that tumour cells with a BRCA2 mutation showed signifi- 

cantly enhanced cell death compared to controls after treatment 

with PARPi drugs. Both groups proposed that PARPi’s mediate 

their function by impeding the repair of SSBs, which upon colli- 

sion with replication machinery lead to the collapse of replication 

forks. This will result in the activation of DSB repair by HR, how- 

ever this pathway is defective in BRCA2 mutant cancers, hence 

collapsed forks will not be repaired and the cell will be targeted for 

death [139, 140]. More recent publications however have suggested 

that PARPi’s effect death by preventing the self-PARylation of the 

enzyme, causing it to be ‘trapped’ on the DNA, preventing DNA 

replication and repair, and causing cytotoxicity [141]. 

The use of PARPi’s as single agent therapies for BRCA1 and BRCA2 

mutant cancers has shown survival benefit for breast and ovarian 

patients in the clinic [142-145]. Current US FDA approved PAR- 

Pi’s include 1st generation inhibitors Olaparib, Rucaparib, Nirapa- 

rib, and 2nd generation Talazoparib, which are all employed in the 

treatment of ovarian cancer, although Olaparib is also approved 

for breast cancer [146]. Furthermore, efforts are focused on testing 

the efficacy of PARPi’s in a range of other cancers which possess 

mutations in DNA repair proteins [147, 148]. Another consider- 

ation is the potential for acquired and de novo resistance to PARPi 

treatment amongst patients receiving the drugs at early stages of 

disease and those on long-term treatment, necessitating the need 

for development of novel combination therapies [149]. 

              

Figure 6: PARP Inhibitor Therapy 

PARP inhibitors (PARPi) exploit the synthetic lethal interaction between BER protein PARP, 
and DSB repair proteins such as BRCA1/2. By inhibiting PARP, the repair of simple DNA le- 
sions is inhibited, causing them to potentiate to DSBs. In cells defective for HR the cell will be 
unable to repair these breaks and the cell will apoptose, thereby enhancing cancer cell death. 
Normal cells with functional HR pathways will be unaffected. 

11. Conclusion 

DNA damage elicits the activation of the highly complex DNA 

damage response. Depending on the DNA lesion induced the cell 

can activate one of the five core repair mechanisms discussed above, 

each of which should resolve the damage and maintain genome 

stability. In addition, the cell skilfully activates its DDR network in 

coordination with cell cycle checkpoint activation to allow time for 

the complete resolution of damage. The system does possess a de- 

gree of functional redundancy, with two high-fidelity repair path- 

ways (NHEJ and HR) which can compensate for the loss of one 

another to a degree. However, mutations of DNA repair proteins 

are a common feature of cancer cells. PARPi therapies discussed in 

this review are currently used to treat a number of cancers carrying 

mutations in HR proteins BRCA1/2, and they represent an advance 

in the field of targeted treatments. Future research in this arena will 

most likely highlight novel synthetic lethal partners, akin to BRCA 

and PARP1, which could be targets for therapeutic exploitation 

with PARPi’s. 
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