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1. Abstract 
As for the increasing of prevalence of colorectal cancer (CRC) 
overworld, it is vital to decrease its morbidity and mortality with 
early detection. Tests being based on metabolomics are an creative 
ideal tool for CRC detection. Here, biomarkers to distinguish pa-
tients with CRC from those healthy controls (HC) have been ex-
plored and validated. Meanwhile, a total of 64 Colorectal cancer as 
well as healthy control samples were collected from patients who 
having CRC and HC. Untargeted colorectum metabolite profiling 
was conducted with Ultra High Performance Liquid Chromatogra-
phy (UHPLC)-Q-TOF MS. With different kind of machine learn-
ing (ML) classifier models,we assessed the discrimination abilities 
of the quantified metabolites, including Random Foreset (RF), 
Least Absolute Shrinkage and Selection Operator (Lasso), Support 
Vector Machine (SVM), The k-Nearest Neighbors (k-NN), Naïve 
Bayest (NB), and Logistic Regression. Data were divided into 
training (n =32) and validation datasets (n = 32) randomly. The 
clustering analysis showed a distinct consistency of aberrant me-
tabolites between the two groups while approaches can be adjusted 
to tradeoff between sensitivity and specificity. To develop a more 

effective model, we also formed a series of logistic models with 18 
significant metabolite, a combination of the top 3 metabolites, and 
4 different reduced models, the results showed that introducing 
more variables may not add to the utility, the reduced logistic mod-
el (1,2-dioleoyl-sn-glycerol + Glyceryl tripalmitoleate, with AUC: 
0.8491,) is the most efficient and effective machine learning model 
for our classification task. Moreover, we can also find a significant 
difference on the sensitivity between tumor markers (TMs) and 
ML models. Therefore, we report that colorectal metabolomics 
combined with ML demonstrate high accuracy and versatility in 
distinguishing CRC from those healthy controls.

2. Introduction 
Although the diagnosis and management of cancer in the last dec-
ade have been advanced, CRC still represents a significant global 
hygeian burden. Overall, CRC ranks the third in cancer morbidi-
ty and second in mortality among whole kind of cancers all over 
the world [1,2]. The prevalence of CRC is intimately associated 
with the westernization in dietary and other health habits. At the 
same time, it is expected to increase further in developed coun-
tries which have a remarkable economic growth [3,4]. Apparently, 
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cancer detection is an important issue in CRC diagnosis and treat-
ment,which should be resolved immediately. 

Fecal occult blood test is the most commonly used in the tests of 
CRC screening. Although these tests have had a prominent con-
tribution to the reducting the mortality rate associated with CRC 
[5,6], their limited sensitivity for early-stage precancerous lesions 
indicated the need for more improvement [7]. In addition, a large 
proportion of the at-risk population is still often diagnosed in ad-
vanced stages [8]. Currently blood-based biomarkers which is put 
into use for CRC such as CEA and cancer antigen 19-9 (CA19-9), 
are suitable for surveillance or prognostic indicator in CRC treat-
ment but not for screening or diagnosing because of low sensitiv-
ity and specificity. Otherwise, the association with other types of 
gastrointestinal cancers, including gastric cancer, pancreatic can-
cer, or gynecological cancer such as ovarian cancer also have a 
infiluence on it[9]. Consequently developing a novel method that 
screens CRC more conveniantly with higher sensitivity and spec-
ificity is paramount.

Frequently mutated genes including BRAF, APC, KRAS, CTN-
NB1 and SMAD4 have been identified in association with CRC 
[10]. The epigenetic variation in CRC disorder the hyper-and hy-
pomethylation, which inactivates the tumor suppressor genes and 
activates oncogenes and leads to epithelial cell growth resuilting in 
cancerous tumor formulation [11]. In addition to genetic changes, 
malignant cancers, including CRC, show drastic metabolic shifts. 
For instance, the glycolysis pathway can be actived by tumor cells 
with the ignorance of oxygen availability,which produces adeno-
sine triphosphate (Warburg effect) [12]. In addition, the upregula-
tion of oxidative phosphorylation has been found and reported in 
several cancers [13]. Glutamine is used as a carbon source alter-
native to glucose via the TCA in proliferating tumor cells to syn-
thesize purines and pyrimidines[14]. In addition, holistic changes 
such as amino acid, pentose phosphate, urea cycle, polyamine, and 
nucleotide pathways in the metabolic pathways have been report-
ed[15–17]. Therefore, the metabolites that reflect these metabolic 
aberrances associated with CRC have been analyzed to establish a 
novel set of biomarkers [18-24].

In order to enhance the discriminability of multiple biomarkers, 
ML is a cornerstone [25,26]. Nakajima et al previously have used 
an alternative decision tree (ADTree)–based prediction method to 
detect CRC [27], and metabolomics with this ML method showed 
a high discriminability for breast cancers [28].

In this study, we performed colorectal metabolomic profiling of 
colorectum collected from patients who have been diagnosed with 
CRC and HC. Six different kind of ML models were developed to 
determine the combination of metabolite concentrations that could 
discriminate between two groups among these models. More than 
64 samples were examined, and the data were divided into two da-
tasets. One dataset was used for the ML model development, and 
the other dataset was used to validate the ML model. Our approach 

has shown the screening potential of colorectal metabolomic pro-
files to detect CRC.

3. Materials and Methods 
3.1. Subjects 

This study was approved by the Ethics Committee of Longhua 
hospital affiliated to Shanghai University of Traditional Chinese 
Medicine and conducted in accordance with the Declaration of 
Helsinki. Written informed consent was obtained from all partici-
pants who agreed to serve as donors. Patients histopathologically 
diagnosed with colorectal adenocarcinoma were included while 
the patients with all other types of cancer (adenosquamous cell 
carcinoma, endocrine carcinoma, lymphoma, etc.) were excluded. 
The resected specimens were pathologically classified according 
to the 7th edition of the Union for International Cancer Control 
TNM Classification of Malignant Tumors [29].

3.2. Colorectum Collection 

Colorectum samples were collected after colorectal surgery. Ap-
proximately 100mg of colorectal cancer tissues as well as cor-
responding paracancer tissues was collected and stored in 5 ml 
polypropylene tubes on ice in order to prevent the degeneration of 
metabolites. After that, the samples were immediately stored at a 
tamperature of −80°C. 

3.3. Colorectum Preparation and LC-MS/MS Analysis 

UHPLC-Q-TOF MS was used for nontargeted analyses of colorec-
tal metabolites, UHPLC-Q-TOF MS analysis was performed using 
an UHPLC (1290 Infinity LC, Agilent Technologies) coupled to a 
quadrupole time-of-flight (AB Sciex TripleTOF 6600) in Shanghai 
Applied Protein Technology Co., Ltd. 

Colorectum samples were analyzed via two methods. For HILIC 
separation, samples were analyzed using a 2.1 mm × 100 mm AC-
QUIY UPLC BEH Amide 1.7 µm column (waters, Ireland). In 
both ESI positive and negative modes, the mobile phase contained 
A=25 mM ammonium acetate and 25 mM ammonium hydroxide 
in water and B= acetonitrile. The gradient was 95% B for 0.5 min 
and was linearly reduced to 65% in 6.5 min, and then was reduced 
to 40% in 1 min and kept for 1 min, and then increased to 95% in 
0.1 min, with a 3 min re-equilibration period employed. 

The ESI source conditions were set as follows: Ion Source Gas1 
(Gas1) as 60, Ion Source Gas2 (Gas2) as 60, curtain gas (CUR) as 
30, source temperature: 600℃, IonSpray Voltage Floating (ISVF) 
± 5500 V. In MS only acquisition, the instrument was set to acquire 
over the m/z range 60-1000 Da, and the accumulation time for 
TOF MS scan was set at 0.20 s/spectra. In auto MS/MS acqui-
sition, the instrument was set to acquire over the m/z range 25-
1000 Da, and the accumulation time for product ion scan was set at 
0.05 s/spectra. The production scan is acquired using information 
dependent acquisition (IDA) with high sensitivity mode selected. 
The parameters were set as follows: the collision energy (CE) was 
fixed at 35 V with ± 15 eV; declustering potential (DP), 60 V (+) 
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and −60 V (−); exclude isotopes within 4 Da, candidate ions to 
monitor per cycle: 10.

3.4. Metabolomics Data Processing 

The raw MS data were converted to MzXML files using Prote-
oWizard MSConvert before importing into freely available XCMS 
software. For peak picking, the following parameters were used: 
centWave m/z = 10 ppm, peakwidth = c (10, 60), prefilter = c (10, 
100). For peak grouping, bw = 5, mzwid = 0.025, minfrac = 0.5 
were used. CAMERA (Collection of Algorithms of MEtabolite 
pRofile Annotation) was sued for annotation of isotopes and ad-
ducts. In the extracted ion features, only the variables having more 
than 50% of the nonzero measurement values in at least one group 
were kept. Compound identification of metabolites was performed 
by comparing of accuracy m/z value (<10 ppm), and MS/MS spec-
tra with an in-house database established with available authentic 
standards.

3.5. Statistical Methods

3.5.1. Data Introduction: In this experiment, 64 samples were 
collected, including metabolite data of 32 cancer cells and their 
corresponding normal tissues. A total of 22,604 detection materials 
were obtained, among which 1179 metabolites were characterized 
in HMDB or KEGG.

In addition to metabolomics data, clinical trial data, including age, 
sex, and smoking history, were added to the study. After we nu-
meralize this information, we get a data set consisting entirely of 
numerical data, which we can use for machine learning.

3.5.2. Feature Selection: For the large number of metabolites, we 
need to screen out the differential metabolites that meet the re-
quirements through statistical methods. The common method is to 
use Fold Change to find metabolites with large difference multi-
ples. However, the metabolic data of cancer tissues obtained in this 
experiment appear in pairs with that of normal tissues, indicating 
that the simple difference of multiples may cause errors. There-
fore, Wilcoxon Wigned Rank Test was also used for metabolites 
in the screening process. The metabolites with p value <0.05 were 
selected, and the results obtained in FC were intersected to obtain 
accurate differential metabolites.

3.5.3. Learning a Classifier: Machine learning can be divided 
into supervised machine learning, unsupervised machine learning, 
reinforcement learning, etc., according to whether the data is labe-
led or not. For generating classifiers, supervised machine learning 
is used. The basic principles of supervised machine learning in-
cluding:

1. Input data: It starts with labeled training data, where inputs are 
paired with corresponding class labels or categories.

2. Training Phase: The classifier learns patterns from the labeled 
data to create a model that maps inputs to their respective classes. 
Various algorithms (e.g., decision trees, SVMs, neural networks) 
are used for this purpose.

3. Prediction: Once trained, the classifier can predict the class or 
category of new, unseen data based on the learned patterns.

In this article, we considered several classifiers, including Random 
Foreset (RF), Least Absolute Shrinkage and Selection Operator 
(Lasso), Support Vector Machine (SVM), The k-Nearest Neigh-
bors (k-NN), naïve Bayes (NB), and Logistics Regression, and try 
to develop the most suitable model for prediction.

For Random Forest, it starts by creating multiple bootstrap sam-
ples (random samples with replacement) from the original dataset. 
Each subset is used to build a decision tree. During the construc-
tion of each tree, nodes are split considering different subsets of 
features.

Lasso is an extension of linear regression. It aims to minimize this 
cost function, a combination of the mean squared error (MSE) and 
the L1 regularization term:

 

As  increases, more coefficients tend towards zero, resulting in 
automatic feature selection.

SVM aims to find the optimal hyperplane that separates data into 
different classes while maximizing the margin, which is the dis-
tance between the hyperplane and the nearest data points from 
each class. With kernel function, SVM can efficiently handle 
non-linearly separable data.

k-NN is an instance-based or lazy learning algorithm. It stores the 
entire training dataset and makes predictions based on similarity 
measures between instances. It approximates the target function 
locally around the data point being predicted by looking at its 
k-nearest neighbors.

Naïve Bayes is a probabilistic classifier based on Bayes’ theorem 
with an assumption of independence between features. As we ex-
pect a binary classifier, Bernoulli Naïve Bayes is used in this ar-
ticle.

3.5.4. Software: All code was written in R (version 2.15.1). For 
SVM we used the e1071 (version 1.6) R library. For Naïve Bayes, 
we used the RWeka (version 0.4-12) library for R, which is an 
interface to the WEKA software. For KNN, and RBF SVM we 
used the caret R library (version 5.15-023). For LASSO, we used 
the glmnet R library (version 1.8). For C4.5 we used the C5.0 R 
library (version 0.1.0-15).

4. Results

4.1. Overview of Profiled Metabolites 

To target potential biomarkers, we collected 64 groups of metabo-
lomics data from 32 patients with colorectal cancer, including the 
metabolite levels from both cancerous and normal tissues. Table 1 
summarizes the basic information of the patients.

As for the metabolomics data, we quantified a total of 22604 
metabolites (11052 neg and 11152 pos), and 1179 of them have 
HMDB or KEGG ID, suggesting that they are characterized and 
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investigated. The result of unsupervised hierarchical clustering 
with heat map shown in Figure 1. We can see that the cancerous 

tissues and normal tissues are not fully separated, indicating the 
necessity of feature selection.

Table 1: Subject Information

n 32

Gender

Male 21

Female 11

Age

Mean 66.6875

SD 9.385619

Drink 2

Smoke 1

Anamnesis

Hypertension 17

Diabetes 7

Hyperlipemia 3

Colitis 2

others 13

Lymphatic Metastasis 14

Distant Metastasis 1

Figure 1: Heatmap for all metabolites

4.2. Feature Selection

To detect significant features in these metabolites, we applied 
Fold Change (average FC) and select ones that show an FC >4 
or FC＜0.25. Since the data from cancerous and normal tissues 
appear in pairs, we also applied Wilcoxon Signed-Rank Test, and 
finally locked on 18 metabolites with significance, as showed in 
Figure 2 and Table 2.

These CRC metabolites showed higher concentrations than those 
of HC: Three lipids and lipid-like molecules, such as 4-Methylth-
io-2-oxobutanoic acid, 1,2-dioleoyl-sn-glycerol, Glyceryl tripal-
mitoleate; five organic acids, such as D-erythrose 4-phosphate, 
Leukotriene C4, 4-hydroxy-l-glutamic acid, Cystine, L-Aspar-
tyl-L-phenylalanine; five Nucleosides, nucleotides and analogues, 
such as Udp-n-acetylglucosamine, Uridine 5’-diphosphogalac-
tose, Adenylosuccinic acid, Nicotinate d-ribonucleotide, S-me-
thyl-5’-thioadenosine were included. One phenylpropanoids (Phe-
nyllactic acid), one organic nitrogen compounds (1-methylhista-
mine) were also included;

And several metabolites associated with CRC showed lower con-
centrations than those of HC, including one organic acids (Gam-
ma-Glu-Cys), one organoheterocyclic compounds (1h-1,2,4-tri-
azol-3-amine), and one Benzenoids (Benzalkonium chloride).

Then, the result of unsupervised hierarchical clustering after fea-
ture selection with heat map shown in Figure 3. We can find a 
better clustering effect than Figure 1.
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Figure 2: Volcano Plot

Figure 3: Heatmap for significant metabolics
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name Superclass FC p-value
alpha.-keto-.gamma.-(methylthio)butyric acid (4-Methylthio-
2-oxobutanoic acid) Lipids and lipid-like molecules 5.23 0.00837

D-erythrose 4-phosphate Organic oxygen compounds 4.23 0.04133

Gamma-Glu-Cys (gamma-Glutamylcysteine) Organic acids 0.237 0.00051

Ltc4 (Leukotriene C4) Organic acids 4.74 0.00004

Phenyllactic acid Phenylpropanoids 4.994 0.0004

Udp-n-acetylglucosamine Nucleosides, nucleotides, and analogues 4.408 0.00005

Uridine 5'-diphosphogalactose (UDP-galactose) Nucleosides, nucleotides, and analogues 6.24 0.00066

1-methylhistamine Organic nitrogen compounds 4.043 0.0002

1,2-dioleoyl-sn-glycerol (Diglyceride) Lipids and lipid-like molecules 4.503 0.00018

1h-1,2,4-triazol-3-amine (Amitrole) Organoheterocyclic compounds 0.244 0.0002

4-hydroxy-l-glutamic acid Organic acids 4.13 0.00179

Adenylosuccinic acid Nucleosides, nucleotides, and analogues 5.126 0.00018

Benzalkonium chloride (c12, Coniine) Benzenoids 0.236 0.01323

Cystine Organic acids 4.113 0.00031

Glyceryl tripalmitoleate (Triglyceride) Lipids and lipid-like molecules 8.85 0.00004
L-Aspartyl-L-phenylalanine (Aspartic acid-phenylalanine 
dipeptide) Organic acids 4.038 0.00106

Nicotinate d-ribonucleotide (Nicotinate ribonucleotide) Nucleosides, nucleotides, and analogues 4.591 0.00003

S-methyl-5'-thioadenosine (Methylthioadenosine) Nucleosides, nucleotides, and analogues 5.865 0.00031

Table 2: The different 18 metabolites between CRC and HC with significance

4.3. Partial Least Squares-Discriminant Analysis

Partial least squares-discriminant analysis (PLS-DA) is a versatile 
algorithm that can be used for predictive and descriptive model-
ling as well as for discriminative variable selection [30]. PLS-DA 
can generate score plots and Variable importance projection (VIP) 
score plots [31].

It is widely used in metabolomics analysis and classification. We 
also applied it on our dataset, and evaluated the overall differences 
between cancerous and normal cells. Figure 4 shows the scores 
plot of PLS-DA analysis, distinguishing the two kinds according 
to their scores on the first two components. We did the analysis 
both on the whole dataset and on positive ions and negative ions 
separately. And then we found the metabolites with VIP > 1, which 
was certified as significant factor. Table 3 shows the VIP scores of 
selected metabolics.

According to the VIP scores we get, we can find that most of 
the metabolites we select from 3.1 (as showed in Table 3 with 
grey) show a VIP score >1, including 11 metabolites: 4-Meth-
ylthio-2-oxobutanoic acid, 1,2-dioleoyl-sn-glycerol, D-erythrose 
4-phosphate, Cystine, Udp-n-acetylglucosamine, Uridine 5’-di-
phosphogalactose, S-methyl-5’-thioadenosine, Phenyllactic acid, 
1-methylhistamine, Gamma-Glu-Cys, Benzalkonium chloride. So 
we continued to form our model with these metabolites.

Table 3: The VIP scores of selected metabolics

Name data_VIP

alpha.-keto-.gamma.-(methylthio)butyric acid 0.651904

D-erythrose 4-phosphate 0.683736

Gamma-Glu-Cys 1.65263

Ltc4-[d5] 2.054495

Phenyllactic acid 0.664884

Udp-n-acetylglucosamine 1.097735

Uridine 5'-diphosphogalactose 1.007847

1-methylhistamine 1.705314

1,2-dioleoyl-sn-glycerol 0.683945

1h-1,2,4-triazol-3-amine 1.750107

4-hydroxy-l-glutamic acid 1.022703

Adenylosuccinic acid 1.312669

Benzalkonium chloride (c12) 0.943848

Cystine 1.86491

Glyceryl tripalmitoleate 1.21818

L-Aspartyl-L-phenylalanine 1.305451

Nicotinate d-ribonucleotide 1.204299

S-methyl-5'-thioadenosine 1.699929
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Figure 4: The scores plot of PLS-DA analysis

4.4. Machine Learning Models

With the 18 differential metabolites we find, we are prepared to 
create prediction models based on Machine Learning algorithm. 
The total 64 groups of data were randomly assigned to training 
(n = 32) and validation dataset (n = 32). We were going to form 
machine learning classifier models on the training set and test the 
effectiveness of our models on the validation set.

We applied multiple machine learning classifier models, includ-
ing Random Foreset (RF), Least Absolute Shrinkage and Selection 
Operator (Lasso), Support Vector Machine (SVM), The k-Near-
est Neighbors (k-NN), Naïve Bayest (NB), and Logistic Regres-
sion, to find the most suitable model for our data. We first tested 
these models on the whole dataset and examine their effectiveness 
through their AUC values. The ROC curves are showed in Figure 
5. Their performances on forecast accuracy, specificity.

The effectiveness of the models were not quite up to expectations. 
The result of Lasso regression reminded us that dimensionality re-
duction might lead to a more effective model.

To find appropriate covariates for our model, we formed a series of 
logistic models with only one metabolite. Since the model utilities 
are dependent on how we divide training set and validation set, 
we regenerate these models for 1000 times with different divide 
and calculate the average AUC, accuracy, specificity, sensitivity, 
in order to compare these models correctly. The result is showed 
in Table 4.

We can find that some metabolites outperform the others. For ex-
ample, Ltc4-[d5] (AUC: 0.8191), 1,2-dioleoyl-sn-glycerol (AUC: 
0.8166), and Glyceryl tripalmitoleate (AUC: 0.8143) are the top 
3 metabolites. To develop a more effective model, we consider a 
combination of these top 3 metabolites. Table 5 shows the results 
of these models.

The results showed that introducing all of the variables into this 
model may not add to the utility. The highest AUC is the com-
bination of “1,2-dioleoyl-sn-glycerol + Glyceryl tripalmitoleate”, 
which is 0.8491. So we now have found the most efficient logistic 
model, as reduced logistic model.

In a similar way, we also formed many other reduced models based 
on different machine learning algorithm. The model comparison 
among those models are showed in Table 6. The model compari-
sons for RF, SVM, NB, Logistic with one metabolites.

From this we can conclude that the reduced logistic model is the 
most efficient and effective machine learning model for our classi-
fication task. The model can be described as:

 

where  refers to 1,2-dioleoyl-sn-glycerol and  refers to Glyc-
eryl tripalmitoleate. 

This model only contains 3 coefficients, which meets the requir-
ments of 10 EPV (10 events per variable). 

Table 4: Model compare for logistic models with one metabolites
  AUC SD Accuracy SD Specificity SD Sensitivity SD
alpha.-keto-.gamma.-(methylthio)butyric acid 0.7516 0.0618 0.6371 0.0517 0.3893 0.1119 0.885 0.0978
D-erythrose 4-phosphate 0.6452 0.0721 0.5164 0.0305 0.3483 0.3957 0.6846 0.4107
Gamma-Glu-Cys 0.689 0.0749 0.601 0.0801 0.9003 0.1042 0.3018 0.2275
Ltc4-[d5] 0.8191 0.0549 0.7251 0.0506 0.5288 0.1215 0.9214 0.0766
Phenyllactic acid 0.7709 0.0592 0.6013 0.0552 0.3541 0.2133 0.8485 0.2077
Udp-n-acetylglucosamine 0.7814 0.0604 0.6086 0.0542 0.321 0.2002 0.8961 0.188
Uridine 5'-diphosphogalactose 0.6855 0.0717 0.5874 0.0426 0.2699 0.1291 0.9049 0.1306
1-methylhistamine 0.7093 0.0681 0.6858 0.0462 0.4218 0.1116 0.9498 0.0635
1,2-dioleoyl-sn-glycerol 0.8166 0.0556 0.7111 0.0574 0.5483 0.1594 0.874 0.0821
1h-1,2,4-triazol-3-amine 0.7777 0.0564 0.6473 0.0634 0.6308 0.1901 0.6638 0.2214
4-hydroxy-l-glutamic acid 0.6994 0.0674 0.5988 0.0426 0.2803 0.1544 0.9174 0.1374
Adenylosuccinic acid 0.7558 0.0661 0.6652 0.0489 0.3973 0.1222 0.9331 0.0569
Benzalkonium chloride (c12) 0.6201 0.0708 0.4985 0.028 0.8923 0.2732 0.1047 0.2658
Cystine 0.7125 0.0675 0.727 0.0475 0.5246 0.0949 0.9295 0.0552
Glyceryl tripalmitoleate 0.8143 0.0558 0.7317 0.051 0.5536 0.1056 0.9098 0.0742
L-Aspartyl-L-phenylalanine 0.738 0.0661 0.62 0.0562 0.3249 0.159 0.9151 0.0897
Nicotinate d-ribonucleotide 0.7551 0.0629 0.661 0.0571 0.4069 0.1614 0.9151 0.0865
S-methyl-5'-thioadenosine 0.7711 0.0611 0.6898 0.0504 0.4371 0.1294 0.9426 0.0743
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Table 5: Model comparison for logistic models

  AUC SD Accuracy SD Specificity SD Sensitivity SD

Ltc4-[d5] + 1,2-dioleoyl-sn-glycerol 0.8239 0.0591 0.7432 0.0548 0.6116 0.1299 0.8748 0.0882

Ltc4-[d5] + Glyceryl tripalmitoleate 0.8263 0.0619 0.7379 0.0541 0.5656 0.1083 0.9102 0.0862

1,2-dioleoyl-sn-glycerol + Glyceryl 
tripalmitoleate 0.8491 0.0559 0.7446 0.0528 0.6094 0.1297 0.8798 0.0991

Ltc4-[d5] + 1,2-dioleoyl-sn-glycerol 
+ Glyceryl tripalmitoleate 0.8295 0.0691 0.7383 0.0565 0.6006 0.129 0.8761 0.098

Table 6: Model comparison for reduced models

  AUC SD Accuracy SD Specificity SD Sensitivity SD

reduced_RF 0.8055 0.0497 0.7695 0.0488 0.7581 0.114 0.7808 0.1112

reduced_SVM 0.8168 0.0555 0.625 0 0.4375 0 0.8125 0

reduced_NB 0.8254 0.0531 0.7575 0.0533 0.6113 0.1164 0.9038 0.0872

reduced_Logistic 0.8491 0.0559 0.7446 0.0528 0.6094 0.1297 0.8798 0.0991

Figure 5: ROC Curves

4.5. Pathway Analysis

The overall differences in metabolomic profiles between HC and 
CRC were also evaluated by pathway analysis, while pathway of 
the most important 18 metabolites were marked in red (Figure 6).

Pathway analysis detected three significantly enriched pathways 
of the most important 18 metabolites, including (1)Protein diges-
tion and absorbtion, (2)Biosynthesis of amino acids, and (3) Neu-
roactive ligand-receptor interaction. The Rich factor of pathway 
(1) was relatively high, while those of (2) and (3) were relatively 
small.

Figure 6: Pathway analysis
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4.6. Comparisons with Tumor Markers

Carcinoembryonic antigen (CEA), CA724, CA125, CA153, CA50, 
CA242 and CA199 of the patients were measured. For tumor mark-
ers (TMs), the subjects showing a CEA > 5.0 ng/ml, CA724 > 6.9 U/
ml, CA125 > 25 U/ml, CA50 > 25 U/ml, CA242 > 20 U/ml, or 
CA199 > 30 U/ml were counted as positive. In the dataset, the 
sensitivity to CEA, CA724, CA125, CA153, CA50, CA242 and 
CA199 from CRC subjects were 14.89%, 8.51%, 6.38%, 2.13%, 
2.13%, 8.51% and 10.64%, respectively. Those of reduced models 
RF, SVM, NB, and Logistic, the average sensitivity were 78.08%, 
81.25%, 90.38%, and 87.98%, respectively. We can find a signif-
icant difference on the sensitivity between TMs and ML models.

5. Discussion
 Mainly microRNA, most of microRNA are detected in plasma 
and stool by methylation and abnormal levels of circulating tu-
mor DNA and noncoding RNA,which represent the recently de-
veloped liquid biopsies for CRCs [32]. In saliva samples, MiR-21 
has shown the ability in the discrimination in CRC and HC [33]. 
A single marker showing high specificity for a disease is more 
beneficial for developing simple and reasonable assays compared 
with simultaneous analyses of multiple markers for the detection 
of diseases. The analysis of volatile compounds has also shown the 
potential of detection in CRC [34]. As a pity,the current study can 
only measure hydrophilic metabolites, and more comprehensive 
analyses should be explored to the accuration to the biomarkers 
of CRC.

In this study, we investigated the use of metabolomics to discover 
colorectum-based biomarkers and discriminate these biomarkers 
among CRC and HC. A total of 64 colorectum samples were col-
lected from subjects with CRC (n =32) and HC (n =32). 

As described in the heatmap (Figure 1), we quantified 1179 char-
acterized from a total of 22604 metabolites under unsupervised 
hierarchical clustering, but the CRC tissues and normal tissues are 
not fully separated, indicating the necessity of feature selection. So 
we applied Fold Change (FC >4 or FC＜0.25) as well as Wilcoxon 
Signed-Rank Test and finally locked on 18 significant metabolites, 
as showed in Figure 2 and Table 2. We can find a better clustering 
effect than Figure 1 after feature selection with heat map shown in 
Figure 3. 

We applied multiple machine learning classifier models, includ-
ing Random Foreset (RF), Least Absolute Shrinkage and Selection 
Operator (Lasso), Support Vector Machine (SVM), The k-Near-
est Neighbors (k-NN), Naïve Bayest (NB), and Logistic Regres-
sion, to find the most suitable model for our data. We first tested 
these models on the whole dataset and examine their effectiveness 
through their AUC values. The ROC curves are showed in Figure 
5. Their performances on forecast accuracy, specificity, sensitivity. 
The effectiveness of the models were not quite up to expectations. 

The result of Lasso regression reminded us that dimensionality re-
duction might lead to a more effective model.

A single marker may not be enough for a disease-specific index, 
but ML patterns that capture multiple metabolite would enhance 
the specificity. In order to find appropriate covariates for our mod-
el, we also formed a series of logistic models with these 18 sig-
nificant metabolites, the result is showed in Table 4. The top 3 
metabolites are Ltc4-[d5] (AUC: 0.8191), 1,2-dioleoyl-sn-glycer-
ol (AUC: 0.8166), and Glyceryl tripalmitoleate (AUC: 0.8143). To 
develop a more effective model, we then formed a combination of 
these top 3 metabolites (Table 5) , it showed the highest AUC is 
0.8491 of the group “1,2-dioleoyl-sn-glycerol + Glyceryl tripalmi-
toleate” . So we now have found the most efficient logistic model, 
as reduced logistic model. 

Leukotriene C4, 1,2-dioleoyl-sn-glycerol, and Glyceryl tripalmi-
toleate were both involved in lipid metabolism, particularly in the 
synthesis and transformation of lipids. Leukotriene C4 is a product 
of arachidonic acid metabolism, while 1,2-dioleoyl-sn-glycerol 
and Glyceryl tripalmitoleate are lipid molecules associated with 
esterification reactions involving glycerol and fatty acids. It can be 
inferred that the Fatty acid metabolism and glutaminolysis, being 
characteristic of cancer metabolism, might underlie the observed 
characteristics. In addition, several lipids and lipid-like molecules, 
such as 4-Methylthio-2-oxobutanoic acid, 1,2-dioleoyl-sn-glycer-
ol (Diglyceride), some of Organic acids, such as Cystine, and some 
Nucleosides, nucleotides, and analogues, such as Udp-n-acetyl-
glucosamine, Uridine 5’-diphosphogalactose were also elevated in 
CRC. The intermediate metabolites associated with these energy 
and amino acid pathways were continually reported. 

In a similar way, we also formed many other reduced models based 
on different ML algorithm. The model comparison among those 
models are showed in Table 6 for RF, SVM, NB, and we concluded 
that the reduced logistic model is the most efficient and effective 
machine learning model for our classification task. 

We also compared the sensitivity of ML models with those of 
CEA, CA724, CA125, CA153, CA50, CA242 and CA199 in CRC 
data. Both ML models showed better sensitivity compared with 
these seven TM. The sensitivity of CEA, CA724, CA125, CA153, 
CA50, CA242 and CA199 from CRC subjects were 14.89%, 
8.51%, 6.38%, 2.13%, 2.13%, 8.51% and 10.64%, respectively. 
While the sensitivity of four reduced models of RF, SVM, NB, and 
Logistic were 78.08%, 81.25%, 90.38%, and 87.98%, respective-
ly. Therefore, we can find a significant difference on the sensitivity 
between TMs and ML models in our dataset, the complimentary 
use of ML models with TM may benefit the screening of CRC.

Several limitations need to be acknowledged. Firstly, the sample 
size is not relatively large enough and the proportion of these two 
groups does not reflect the actual prevalence of these diseases. 
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Secondly, the comparison with other diseases, using other cancer 
types in especial, was not performed. Thirdly, our approach in the 
current study showed CRC detection abilities; however, room to 
improve the sensitivity and specificity of CRC detection still ex-
ists. 

In conclusion, we analyzed the colorectal metabolic profiles of 
CRC and HC. The data showed consistent profile patterns, in-
cluding 1,2-dioleoyl-sn-glycerol and Glyceryl tripalmitoleate. The 
reduced logistic model successfully discriminated against these 
groups which have high sensitivity and specificity. In addition, the 
models showed higher sensitivity compared with CEA, CA724, 
CA125, CA153, CA50, CA242 and CA199. The models could 
give a great contribution to clinical screening for CRC in the fu-
ture.
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