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1. Abstract 

F-18 FDG PET/CT imaging radiomics and cell free DNA (cfDNA) 

analysis also known as liquid biopsy are both gaining interest for 

characterization of tumors in personalized cancer therapy. Both 

are minimal invasive, widely availability and feasible. Aim of this 

study was to examine the correlation of the F-18 PET/CT radiom- 

ics with the lung cancer mutations from cfDNA. 

1.1. Methods: Fifty-five lung cancer patients were prospectively 

recruited. Radiomics feature extraction from F-18 FDG PET/CTs 

as well as genome mutation analysis of cfDNA for lung cancer 

relevant mutations such as RET, EGFR, KDR, HRAS, SKT11, 

ERRB4, FGFR and PIK3CA from the same patients at the same 

time point were performed. Tumor volume (TV) and total lesion 

glycolysis (TLG) were defined by volumetric PET parameters. 

Patient’s survival was analyzed according to the tumor volume and 

different radiomic features. Present mutations were correlated with 

extracted radiomic features. 

1.2. Results: We found significant relationships between multiple 

features in PET/CT radiomics and mutated genes in cfDNA. The 

most significantly correlated features were related to homogeneity 

of the tumor in terms of structure as well as metabolism. A number 

of CT, PET and fusion PET/CT features correlated with mutations 

in cfDNA: PET GLCM Dissimilarity for SKT 11 (AUC=0.80; P< 

0.0001), CT Histogram Entropy for FGFR mutation (AUC=0.86; 

P<0001), CT Intensity Mean for EGFR (AUC=0.72; P=0.0167), 

PET Histogram Entropy for PIK3CA (AUC=0.77; P= 0.0002) and 

CT Histogram Kurtosis for RET mutation (AUC=0.74; P<0.0001). 

Tumor volume, and TLG significantly correlated with survival 

(P-Value: 0.04 and 0.04, respectively). A decision tree model ap- 

plied using the two radiomic features with the highest AUC corre- 

lates with the prevalence of mutations. For FGFR, the prevalence 

of mutation increased from 5% to 50% and 90% for score zero, 

score one and score two, respectively. In conclusion, the most im- 

portant and new finding of this study is the significant correlation 

of several FDG PET/CT radiomic features with relevant mutations 

from cfDNA in lung cancer. These findings might help to charac- 

terize lung cancer, it’s residue after treatment or recurrence non-in- 

vasively, and potentially accurate (with the combination of liquid 

biopsy and radiomics) with impact on treatment. 

2. Introduction 

Tumor heterogeneity is an important principle not only per patient 

but also in different stages of disease in cancer patients. Genome 

wide association studies are increasingly used as appropriate and 

important tool in the development of personalized therapy in can- 
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cer patients (verma, 2017). As biopsies are invasive and prone 

to sampling error, a non-invasive tumor characterization such as 

liquid biopsy, which can be repeated easily in different stages of 

disease, is needed. 

Liquid biopsy is considered as a minimally invasive method which 

has the potential to be used for detecting tumor derived markers 

for diagnostic and prognostic purposes (Siravegna, 2019). In re- 

cent years, several studies have evaluated the validity of liquid 

biopsy in diagnosis, prognosis and follow-up of multiple cancers 

(Cohen, 2017). 

Per definition, circulating extra nuclear nucleic acids – including 

cell free DNA (cfDNA) - are considered as one subgroup of liquid 

biopsies which carries information about the dynamics of cancer 

specific gene alterations. (Volik, 2016) A study with colon cancer 

patients showed that the amount of cfDNA in the blood is corre- 

lated with patients’ outcome. (Boysen, 2017) Other results point 

towards a possible monitoring of cfDNA level for prolonging the 

period of follow-up images like computed tomography. (Bi, 2020) 

(Lyskjær, 2019) 

The importance of tumor specific gene mutations on therapy re- 

sponse is well established. The association between cfDNA and 

clinical outcome, invasiveness of the tumor or clinical response is 

already studied to some extent (Boysen a. k., 2017). Several stud- 

ies have shown the correlation of mutations analyzed from cfDNA 

and tissue samples (Herbreteau, 2019). In lung cancer patients, 

recently multiple studies reported the concordance of EGFR mu- 

tation in plasma and tissue samples of non-small cell lung cancer 

(NSCLC) patients. (Liu1†, 2020) (Ianza, 2021) (Ntzifa, 2021) . 

Another non-invasive approach for characterization of cancer is 

the use of radiomics. In radiomics-based studies a large number of 

features, extracted from medical in vivo images, are used to iden- 

tify cancer-specific imaging signatures, which may correlate with 

the biology of cancer cells. (Hong, 2020) 

Deregulation of cellular energy metabolism is a hallmark of can- 

cer, which is why FDG-PET is used to image cancer clinically 

(Pavlova, 2016). There is growing evidence, that FDG uptake by 

tumors is altered by driver oncogenes, while oncogene downreg- 

ulation results in decreasing FDG uptake, preceding effects on tu- 

mor regression. (Alvarez, 2014) (Heiden, 2018) 

We hypothesize that activated oncogenic pathways within a tumor 

are a primary determinant of its metabolism and provide a frame- 

work to interpret effects on this key parameter in clinical imaging. 

We tried to identify distinct phenotypic metabolism patterns via 

PET/CT radiomic-based characteristics and correlated it with gene 

expression data from cfDNAs of the same lung cancer patients. 

3. Materials and Methods 

3.1. Study Design and Patient Selection: This study was per- 

formed as a single center, prospective cohort study, starting in 

2016 after IRB approval (ethics approval number 1649/2016) until 

2018. Lung cancer patients, regardless of the histological type 

of cancer (adeno carcinoma, squamous cell carcinoma etc.) and 

also regardless of the cancer staging situation (primary or meta- 

static) scheduled for 18F-FDG PET/CT imaging at the Division of 

Nuclear Medicine of the University Hospital in Vienna have been 

included in our study. 

An informed consent was signed by both competent physician and 

patient after a detailed information. Patients who have had an on- 

going therapy at the time of PET imaging and those who had any 

acute parallel inflammatory process or medical procedure which 

may affect PET-uptake (recent operation, second malignancy, 

acute infection, known inflammatory disease) were excluded from 

the study. 

Relevant information including histopathological data and/or cy- 

tology data (if present) of each patient was collected from the IT 

system of Vienna general hospital [AKH-Information Manage- 

ment (AKIM)]. 

3.2 Isolation and Quantification of Cell-Free DNA from Blood 

Samples: Peripheral blood from included patients was collected 

in cell-free DNA collection tubes (Streck) before the application 

of 18F-FDG. Blood samples were proceeded within 12 hours of 

collection via a 2-step centrifugation protocol. Plasma was sepa- 

rated from the other blood components by centrifugation at 2000- 

x g for 20 minutes at 22°C. After transferring the upper plasma 

layer to a new conical tube, it was centrifuged at 3200-x g for 30 

minutes at 22°C to remove cell debris. Subsequently the result- 

ing plasma supernatant was stored at -20°C until cfDNA isolation. 

Circulating DNA isolation from 5-10ml plasma was performed on 

the Chemagic 360 Instrument (Perkin Elmer) with the isolation 

kit CMG-1111 (Chemagic cfDNA 10k Kit special H12) according 

to manufacturer’s instruction. Cell-free DNA was eluted in 50µl 

Elution Buffer. DNA quantification was performed with Qubit® 

dsDNA HS Assay Kit (Invitrogen) according to the instructions 

provided by the manufacturer and purity was determined by Agi- 

lent 2200 TapeStation System. Cell-free DNA was stored at -20°C 

until further analysis. 

3.3 Next-Generation Sequencing (NGS) of cell-free DNA: Li- 

brary preparation was conducted using AmpliSeq™ Library PLUS 

with AmpliSeq™ Cancer HotSpot Panel v2 for Illumina®. This 

panel is designed to amplify 207 amplicons covering hotspot 

regions of 50 genes with known association to cancer. (Supple- 

mentary Table 1) Subsequent sequencing of pooled libraries was 

performed in several runs on the MiniSeq Illumina platform us- 

ing MiniSeq High Output Reagent Kit (300-cycles). Data analysis 

was conducted using DNA Amplicon workflow via Base space 

Sequence Hub. The NGS data alignment was performed with Bur- 

rows-Wheeler Aligner (BWA) and subsequently Somatic Variant 

Caller was used. Variant annotation was performed with Illumina 

VariantStudio 3.0 Software. RET, EGFR, KDR, HRAS, PIK3CA, 

SKT11, ERRB4 and FGFR were determined for the analysis. 
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Table 1: Mutations identified in cfDNA by use of next generation sequencing (N=20) 
 

Gene dbSNP Protein Coverage 

Alt variant 

frequency 

(%) 

Allele 

frequency 

(%) 

ALK rs3738868 NM_004304.4.3594C>T(p.=) 38884 48.3 10.3 

EGFR,EGFRAS1 rs1050171 NM_005228.3.2361G>A(p.=) 2247 51.3 43.27 

CDKN2A rs774904310  2198 3.1 0.3 

CSF1R rs547653185  4299 47.9 0.3 

ERBB4 rs839541 NP_005226.1.Tyr283Ter 5097 45.8 35.5 

FGFR1  NP_001167538.1.Thr297Ile 47 14.9 0.5 

FGFR3 rs3135898 NM_001163213.1.1965+22G>A 5755 52.3 2.12 

FLT3 rs75580865 NM_004119.2.2053+23A>G 3993 84.1 3.07 

HRAS rs12628 NM_005343.2.81T>C(p.=) 5417 52.4 29.71 

IDH1 rs11554137 NM_005896.2.315C>T(p.=) 7883 51.6 5.69 

JAK3 rs3213409 NP_000206.2.Val722Ile 3231 51.5 0.36 

KDR rs7692791 NP_002244.1.Gln472His 2610 55.2 54.41 

KIT rs3822214 NM_000222.2.1638A>G(p.=) 4762 51.8 6.45 

KRAS rs121913529 NP_203524.1.Gly12Val 8584 32.8 0.8 

MET rs56391007 NP_001120972.1.Arg359Gln 3143 52.2 0.34 

PDGFRA rs2228230 NM_006206.4.2472C>T(p.=) 3812 50.5 24.04 

PIK3CA rs3729674 NM_006218.2.3075C>T(p.=) 796 50.9 27.34 

RET rs1800861 NM_020975.4.2307G>T(p.=) 5263 48.8 71.25 

SMAD4 rs948588 NM_005359.5.354G>A(p.=) 4083 48.7 3.87 

SMARCB1 rs5030613 NM_003073.3.1119-41G>A 30.73 46.4 15.18 

STK11 rs2075606 NP_000446.1.Phe354Leu 1898 55.3 35.96 

TP53 rs1800372 NM_000546.5.639A>G(p.=) 4886 48.7 0.54 
 

3.4 Imaging protocol: Whole-body 18F-FDG PET/CT from mid 

cranium to the upper thighs was performed using a 64-row, mul- 

ti-detector PET/CT system (Biograph™ 

TruePoint™ 64; Siemens Healthineers, Erlangen, Germany) with 

an axial fieldof-view of 216 mm, a PET sensitivity of 7.6 cps/kBq, 

and a transaxial PET resolution of 4–5 mm (full-width at half-max- 

imum, FWHM). 

Prior to imaging, patients fasted for 6 hours; the blood glucose 

cut-off level was 150 mg/dl. PET images were obtained at 50-60 

min after the intravenous administration of an average dose of 300 

MBq (range: 275-320 MBq) of 18FFDG, over 5-6 bed positions 

(bp) and an emission scan of 2-3 min per bp. PET images were 

reconstructed using the Siemens TrueX algorithm, with 4 itera- 

tions and 21 subsets, a 5 mm slice thickness and a 168x168 matrix. 

Venous-phase CECT was performed following the intravenous in- 

jection of 100 ml Iomeron 300 (Bracco, Milan Italy) at a rate of 2 

ml/s, followed by a 50 ml saline flush and CT with the following 

parameters: a tube current of 120 mA, a tube voltage of 230 keV, 

a collimation of 64x0.6 mm, a slice thickness of 3 mm with 2 mm 

increments and a 512x512 matrix. 

3.5 Primary Image Analysis and Tumor Segmentation: A nu- 

clear medicine physician assessed the PET/CT fusion of each case 

visually for correct alignment, and if necessary, co-registered the 

images manually by applying Hermes Hybrid 3D Viewer (Hermes 

Medical Solutions, Stockholm, Sweden). The collected PET CT 

images were delineated by using the standard isocount 3D VOI 

(Volume of Interest) generation tool of the Hermes Hybrid 3D 

software (Hermes Medical Solutions, Stockholm, Sweden) using a 

correlated threshold of each patients imaging with the average of 

3,12 for Tumor lesion glycolysis (TLG) and metabolic tumor vol- 

ume (MTB) were calculated for all tumor lesions (metastatic and 

primary) according to the known protocol (Im, 2013). From CT 

VOIs, Hounsfield Units (HU) were extracted. A reference standard 

uptake value (SUV) threshold was given for each lesion serving 

as stopping criteria of the 3D isocontour generation. If necessary, 

manual modification of the isocontour threshold was performed. 

In addition, manual slice-by-slice VOI boundary modification was 

done for proper delineation of each lesion. A reference region (liv- 

er) also has been defined for calculation of tumor-tobackground 

ratio (TBR). The delineated regions were saved to PACS into the 

project folder. (Figure 1) 
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A  B 

Figure 1: Coronal view of two example fused PET/CT images (left) and PET images (right) from the lung cohort in coronal. A patient with primary 

lung cancer B patient with primary and metastatic lung cancer. 

3.6 Quantitative Image Feature Extraction: The primary end- 

point of the study was to investigate if radiomic features extracted 

from PET/CT imaging correlate with the results of cfDNA gene 

analysis. Therefore, VOIs were exported to comma-separated val- 

ue (CSV) file formats from the Hybrid 3D software. Calculation 

of 90 conventional as well as textural parameters has been per- 

formed over the 3D arrays (See supplemental Table 1 as of IBSI 

guidelines). 

Establishment of a feature vector database: All extracted features 

(Supplement Table 1) were stored in a feature vector database in a 

row together with the respective mutation mask extracted from the 

cfDNA of the same patient. The resulting database was saved in a 

standard CSV file. Each row contains PET, CT and fused PET/CT 

features together with the analyzed gene mutations. 

3.7 Statistical Analysis: Extracted data including patient’s radi- 

omic and genomic information expressed with mean and standard 

deviation as quantitative variables whereas age, sex and gene mu- 

tation data used as categorical independent variables. We tested 

for survival differences in patients with mutated versus non-mu- 

tated genes with the Kaplan-Meier analysis using log-rank test. 

The correlation between tumor volume and/or TLG with survival 

rate also was done with the Kaplan-Meier analysis using log-rank 

test. The Wilcoxon (Mann-Whitney U) range sum test was used to 

determine whether there is a significant difference in each imaging 

feature value with specific mutated cases versus non-mutated ones 

(as an example measurement of tumor-to-background ratio as a 

quantitative feature have been checked in EGFR mutated ones ver- 

sus non-mutated group). A p-value less than 0.05 was considered 

as significant. For each statistically significant feature per specific 

mutation, we evaluated the predictive value of the feature for the 

correlated mutation using the area under curve (AUC) receiver-op- 

erating characteristic (ROC analysis). Analysis and curves were 

performed using PrismGraphPad and Statistical Package for So- 

cial Science (SPSS version 25). 

3.8 Data policy: All patients have been pseudonymized for further 

evaluation. Only authorized persons have had access to the data. 

The data was stored on a PC with access restrictions. 

4. Results 

4.1 Patient characteristics: From 55 liquid biopsies and PET CTs 

taken from lung cancer patients, 41 samples/images were used 

for further evaluations. 14 samples had to be excluded because of 

blood lysis, lack of obtained plasma for detecting cfDNA or inap- 

propriate imaging quality. 

Clinical characteristics of the studied patients are presented in (Ta- 

ble 1), including the type of cancer, indication for imaging at the 

time of liquid biopsy (primary staging, therapy response, follow 

up, post-operative, etc.) and accessibility of pathology tissue from 

the primary tumor. For all available pathology tissuesections from 

studied patients with adenocarcinoma and squamous cell carcino- 

ma EGFR was tested routinely. Pathology tissues obtained since 

2018 have been tested additionally for ALK, ROS, KRAS, TP53 

and PIK3CA mutation as well as a routine procedure. From 41 pa- 

tients, 32 (78%) had a pathology report from primary tumor and in 

6 patients the time interval between tissue biopsy and liquid biopsy 

was less than 40 days. 75% of patients were diagnosed with non- 

small cell lung cancer (NSCLC) with 70% was adenocarcinoma 

(ADC), 21% squamous cell carcinoma (SCC) and 9% other types. 

Sex and age also followed a normal distribution pattern with male 

dominancy in SCC and female dominancy in ADC and higher 

prevalence in elderly. (Kabir, 2008) (Sagerup1, 2011) 
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Table 1: Clinical characteristic of patients 
 

Patients Total ADC SCC SCLC Carcinoid Others 

Male 24 10 6 3 1 4 

Female 17 12 3 0 2 0 

Age > 65 27 15 5 2 2 3 

Age < 65 14 9 4 1 0 0 

Tumor Situation at the Time of Liquid Biopsy       

Primary Tumor 7 4 1 2 0 0 

Post-operative +/- CHT 11 7 4 0 0 0 

CHT +/- Radiation 23 11 5 1 3 3 

Available Primary Tumor Pathology 32 20 7 1 3 1 

ADC: Adenocarcinoma; SCC: Squamous Cell Carcinoma; SCLC: Small Cell Carcinoma; NET: Neuroendocrine Tumor; Others: Sarcoma, Melano- 

ma; CHT: Chemotherapy 

4.2 Detection gene mutation in fcDNA: cfDNA isolation and se- 

quencing was successful in all included patients. A list of detected 

mutations in cfDNA with percentage of allele frequency, coverage 

and all important gene information is given in (Supplementary Ta- 

ble 1). All studied patients have had at least one detected mutation. 

As shown in (Figure 2), 22 germline mutations were detected in 

cfDNA of cancer patients. RET, KDR and EGFR had the highest 

percentage of mutations in the study population with 84%, 82% 

and 77%, respectively. 

 

 

Figure 2: Percentage of detected different mutations in liquid biopsy (cfDNA) of lung cancer patients. Genes are alphabetically arranged; figure is 

produced by Microsoft excel. 

4.3 Correlation of Mutated genes in cfDNA with Radiomic 

Features: There was no correlation between the number of muta- 

tions per patient and TLG. A significant correlation was detected 

between tumor volume and TLG -as two separate independent fac- 

tors- with mortality in the study population. (p-value: 0.04 & 0.04). 

From approximately 90 radiomic features which were extracted 

from F-18 FDG PET-CT images, after using a feature selection 

method for reducing redundancy, 50 features remained as main 

features for further evaluation. (Figure 3) shows the correlation 

heat map with radiomic features before and after redundancy re- 

duction. In the next step each mutated gene was analysed with any 

of chosen extracted features statistically for possible correlation. 

(Table 2) and (Figure 4) are showing the features which signifi- 

cantly correlated with presence or absence of mutation in any of 

above-mentioned genes. (Significant p-value considered as <0.05). 

Table 2 shows that overall more PET features correlated signifi- 

cantly with different cfDNA mutations than CT features (25 vs. 

15). We had also 8 fusion features (PET-CT fusion features) cor- 
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relating with various cfDNA mutations. Looking at each gene mu- 

tation separately, RET and SKT11 mutation had the highest num- 

ber of correlated features (Table 2) and SKT11 had the strongest 

correlation with average p-value of 0.007 with different radiomics 

(Table 2). Color plot curve shows that the HRAS, KDR and SKT 

11 have had the highest number of correlating radiomic features. 

(Table 2 and Figure 4). 

(Figure 5) displays exemplary results of important fusion PET-CT 

features (Figure 5/A), CT (Figure 5/B), and PET (Figure 5/C) in 

different cfDNA mutations separately. The most commonality be- 

tween different mutations and radiomics was observed in “PET- 

CT fusion: Inverse difference”, which is a feature connected to 

the homogeneity of tumor, (Figure 5/A) which is significant in 

4 genes. Among CT related features “CT GLCM cluster promi- 

nence”, which shows the symmetry of distribution in measure area 

of tumor correlated to RET, FGFR and SKT11 mutation (Figure 

5/B). In the PET related features, “PET GLCM Cluster shade” had 

a significant correlation with 5 mutated genes (Figure 5/C) and 

“PET GLCM difference entropy” and “PET GLCM dissimilarity”, 

each showed correlation with 4 mutated genes. 

Table 2: Radiomic features which statistically correlated with detected cfDNA mutation separated by gene. Calculation is done by Mann-Whitney Test 

(P Value<0.05 considered as significant) 
 

HRAS p-Value RET P-Value 

CT::Intensity::Maximum 0.0089 CT::Histogram::Kurtosis 0.0001 

CT::NGTDM::Coarseness 0.0341 CT::Histogram::Mean 0.0414 

CT::Histogram::Energy 0.0106 CT::Intensity::Sum 0.0449 

CT::GLZSM::Large zone low gray Emphasis 0.0419 CT::GLCM::Cluster prominence 0.0084 

CT::NGTDM::Texture strength 0.012 CT::GLCM::Entropy 0.0154 

PET::GLZSM::Large zone size emphasis 0.0481 CT::GLCM::Sum variance 0.0025 

PET::Histogram::Energy 0.0063 PET::GLCM::Dissimilarity 0.0015 

PET::Histogram::Kurtosis 0.0037 PET::GLCM::Difference entropy 0.0055 

PET::Histogram::Skewness 0.0015 PET::NGTDM::Contrast 0.0012 

PET::GLZSM::Small zone size emphasis 0.0136 PET::Intensity::Mean 0.0414 

PET+CT::Fusion::Normalized mutual info 0.0022 PET::GLCM::Cluster shade 0.0134 

PET+CT::Fusion::Correlation 0.049 PET::GLZSM::High gray level zone emphasis 0.0107 

  PET::GLCM::Sum of squares variance 0.0078 

  PET::Histogram::Mean 0.0208 

  PET::Histogram::Variance 0.0162 

  PET::Intensity::Maximum 0.0243 

  PET::GLCM::Inverse difference moment 0.0023 

  PET::GLCM::Sum average 0.0068 

  PET+CT::Fusion::Inverse difference 0.0017 

EGFR P-Value ERBB4 P-Value 

CT::Histogram::Kurtosis 0.0186 PET+CT::Fusion::Inverse difference 0.0268 

CT::Histogram::Mean 0.0155 CT::NGTDM::Coarseness 0.0417 

CT::Intensity::Sum 0.023   

CT::Intensity::Mean 0.0155   

PIK3CA P-Value FGFR P-Value 

PET::GLCM::Cluster shade 0.0017 CT::Histogram::Entropy <0.0001 

PET::Histogram::Entropy <0.0001 CT::GLCM::Cluster prominence 0.0452 

PET::NGTDM::Contrast 0.0083 PET+CT::Fusion::Inverse difference <0.0001 

PET::GLCM::Difference entropy 0.0055 PET::GLCM::Cluster shade 0.0071 

PET::GLCM::Sum average 0.0265 PET::GLCM::Inverse difference 0.0025 

PET::GLCM::Inverse difference moment 0.0117 PET::GLCM::Sum average 0.0028 

PET::GLCM::Dissimilarity 0.0027 PET::NGTDM::Contrast 0.0427 

PET::GLZSM::Large zone high gray emphasis 0.0147 PET::GLCM::Dissimilarity 0.0049 

PET::NGTDM::Complexity 0.0174 PET::GLCM::Sum Entropy 0.0152 

PET::NGTDM::Texture strength 0.0042 PET::GLZSM::Large zone high gray emphasis 0.0026 
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  PET::NGTDM::Complexity 0.0115 

  PET::NGTDM::Texture strength 0.005 

SKT11 P-Value KDR P-Value 

CT::Histogram::Entropy 0.0034 CT::GLCM::Angular second moment 0.0178 

CT::GLCM::Cluster prominence 0.019 CT::GLCM::Entropy 0.0262 

CT::GLCM::Sum variance 0.0065 PET+CT::Fusion::Inverse difference moment 0.0339 

PET::GLCM::Cluster shade <0.0001 PET+CT::Fusion::Inverse difference 0.0182 

PET::GLCM::Inverse difference moment <0.0001 PET::GLCM::Cluster shade 0.0254 

PET::Histogram::Entropy 0.0002   

PET::NGTDM::Contrast <0.0001   

PET::Shape::Compactness 0.0204   

PET::GLCM::Difference entropy <0.0001   

PET+CT::Fusion::Contrast 0.0499   

PET::GLCM::Dissimilarity <0.0001   

PET::GLCM::Sum entropy 0.0049   

PET::GLZSM::Large zone high gray emphasis <0.0001   

PET::GLZSM::Large zone size emphasis 0.0109   

PET::GLZSM::Zone size percentage 0.0197   

PET::NGTDM::Complexity 0.0002   

PET::NGTDM::Texture strength <0.0001   

 

Figure 3: Correlation heat-map with radiomic features before (A) and after (B)redundancy reduction 
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Figure 4: Chord plot of radiomic features associated with genetic mutations. Line width corresponds to the inverse p value 
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Figure 5: Box plots of the most sharing correlated features in PET-CT related radiomic(A) , CT-related radiomic features (B) and PET -related radio- 

mics (C) with cfDNA mutations created in Graph-Pad Prism (P Value <0.05) 
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4.4 Radiomics to Predict Different Gene Mutations in Lung 

Cancer Patients: ROC analysis including AUC was done for ra- 

diomic features for prediction of mutation in a specific gene. (Ta- 

ble 2 Supplementary). The highest predictive value was observed 

in “CT::Histogram entropy“, which predicted mutation in FGFR 

with AUC 0.886 and P<0.0001. FGFR and SKT11 showed the best 

 
Table 2: IBSI-conform reporting of the study 

AUCs as well as P-values in ROC analysis mostly with PET relat- 

ed features. Over all, CT-features had a high AUC for EGFR mu- 

tations (Figure 6/A), whereas PET features tended to have higher 

AUC for prediction of other mutations than CT features (Figure 

4/B). PET GLCM cluster shade predicts mutation of RET, FGFR, 

PIK3CA and KDR with AUC 0.653, 0.7083, 0.732 and 0.682 re- 

spectively. 

 

Category Details 

Patient Preparation  

Volume of Interest 18F-FDG PET-positive lesions in the lung 

Patient Preparation Prior to imaging, patients fasted for 6 hours, blood sugar cutoff was 150 mg/dl 

Radiotracer 18F-FDG 

Acquisition and Reconstruction  

Scanner Type Biograph™ TruePoint™ 64 (Siemens Healthineers, Erlangen, Germany) 

18F-FDG PET Static 

Bed Position 5-6 bed position 

Average Dose 300 MBq (range: 275-320 MBq) of 18F-FDG 

Time After Injection 40-60 minutes after intravenous administration 

Matrix Size (PET) 168x168 

Slice Thickness (PET) 5mm 

Iterations / Subsets 4 iterations, 21 subsets 

Filter Type 3D FBP, Hamming filter 6.2mm cut-off 

CT Venous CE-CT 

Injection 100 ml Iomeron 300 (Bracco, Milan Italy); rate of 2 ml/s; 50 ml saline flush 

Matrix Size (CT) 512x512 

Slice Thickness (CT) 3mm 

Data Conversion  

Step 1 
BQML PET voxel units transformed to weight-normalized SUV automatically by the Hermes Hybrid 3D 

software 

Step 2 
SUV PET voxel values transformed to tumor-to-background ratio (TBR) by dividing voxel values with 

mean of reference region (arcus aorta as cuboid VOI with 4ml volume) 

Segmentation  

Software Hermes Hybrid 3D ver 4.0.0 

VOI Definition Standard semi-automated iso-count 3D 

Number of Experts 
1+1 (1 nuclear medicine expert participated in independent delineations, followed by 1 senior nuclear 

medicine specialist for cross-validation and modification if necessary) 

Reference Image PET 

Image / VOI Interpolation Method Kriging interpolation in 3D, including nearest neighbors in distance of voxel size main diagonal (L, 2018) 

Grid Align by center 

Extrapolation Beyond Original 

Image 

Neighbor distance search calculated as original voxel size main diagonal + epsilon. Missing value: image 

minimum 

Voxel Dimensions 1.0 x 1.0 x 1.0 mm and 4.0 x 4.0 x 4.0 mm (variable voxel resolution per feature as of reference (L, 2018)) 

Partially Masked Voxels (VOI) Taken if more than half of original voxel area included 

Discretization Method Fixed bin width, variable number of bins 

Bin Width 0.01 TBR and 0.1 TBR variable bin width per feature as of reference (L, 2018) 

Image Biomarker Computation / 
Parameters 

 

Biomarker Set Intensity features (6): Minimum, Maximum, Mean, Standard Deviation, Variance, Sum 

 Histogram features (6): Energy, Entropy, Kurtosis, Mean, Skewness, Variance 
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GLCM features (18): Inverse difference, Inverse difference moment, Sum average, Sum variance, Sum 

entropy, Difference variance, Difference entropy, Information correlation 2, 

 
Auto correlation, Cluster shade, Cluster prominence, Maximum probability, Entropy, Contrast, Dissimilarity, 

Angular second moment, Sum of squares variance, Correlation 

 
GLSZM features (11): Large zone emphasis, Small zone emphasis, Low grey level emphasis, High grey 

level emphasis, Small zone low grey level emphasis, Small zone high grey level emphasis, 

 
Large zone low grey level emphasis, Large zone high grey level emphasis, Grey level non-uniformity, Size 

zone non-uniformity, Zone percentage 

 NGTDM (5): Coarseness, Contrast, Complexity, Busyness, Strength 

 Morphological features (2): Volume (voxel counting), Compactness 1 

Custom set Morphological features (1): Spherical dice coefficient as of reference (L, 2018) 

 
Fusion features (GLCM features above a joint histogram) (14): Normalized Mutual Information, Angular 

second moment, Entropy, Contrast, Correlation, Dissimilarity, Sum of squares variance 

 
Inverse difference, Inverse difference moment, Information correlation 2, Auto correlation, Cluster shade, 

Cluster prominence, Maximum probability 

Software 
MUW radiomics engine . (L, 2018) Software availability upon reasonable request from the corresponding 

author. 

Distance Weighting No 

CM Symmetry Symmetric 

CM / ZM Distance Chebyshev distance 1 

CM / ZM Aggregation 3D, full-merging 

IBSI reporting structure of the study. The information presented herein is based on the Imaging Biomarker Standardization Initiative (IBSI) guidelines 

(L, 2018) 
 

Figure 6: ROC analysis with calculation of AUC for FGFR related features (A), EGFR related features (B) and SKT11 related features (C). Analysis 

and curve production done by SPSS 
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Table 3: Calculated the area under curve (AUC)with 95% of CI (confidence interval), Specificity and sensitivity of each statistically correlated radiomic 

feature per mutated genes. Calculation done by Graph-Pad Prism. 
 

Radiomic Feature/Mutation Sensitivity % Specificity % AUC P-Value 

EGFR     

CT::Intensity::Mean 42.31 90.91 0.723 0.0167 

CT::Histogram::Mean 43.59 90.91 0.723 0.0167 

CT::Histogram::Kurtosis 43.5 90 0.717 0.0197 

CT::Intensity::Sum 62.82 81.82 0.711 0.024 

FGFR     

CT::Histogram::Entropy 52.94 91.67 0.8668 <0.0001 

PET+CT::Fusion::Inverse difference 47.06 91.67 0.7933 0.0002 

PET::GLZSM::Large zone high gray emphasis/FGFR 52.94 88.89 0.7312 0.0031 

PET::GLCM::Inverse difference moment/FGFR 52.94 73.61 0.732 0.003 

PET::GLCM::Sum average 70.59 65.28 0.7296 0.0034 

PET::GLCM::Dissimilarity 47 88.89 0.7173 0.0055 

PET::NGTDM::Texture strength 64.71 72.22 0.7165 0.0057 

PET::GLCM::Cluster shade 47.06 80.56 0.7083 0.0078 

PET::GLCM::Difference entropy 64.71 66.67 0.701 0.0102 

PET::NGTDM::Complexity 52.94 80.56 0.6961 0.0122 

PET::GLCM::Sum entropy 52.94 76.39 0.6887 0.0159 

PET::NGTDM::Contrast 41.18 84.72 0.6585 0.0429 

CT::GLCM::Cluster prominence 64.71 70.83 0.6565 0.0456 

PIK3CA     

PET::Histogram::Entropy 76.19 63.24 0.7738 0.0002 

PET::GLCM::Cluster shade 57.14 80.88 0.7234 0.0021 

Radiomic Feature/Mutation Sensitivity % Specificity % AUC P-Value 

PET::GLCM::Dissimilarity 52.38 86.76 0.7143 0.0031 

PET::NGTDM::Texture strength 57.14 75 0.7052 0.0046 

PET::GLCM::Difference entropy 71.43 60.29 0.6989 0.0061 

PET::NGTDM::Contrast/PIK3CA 52.38 80.88 0.6898 0.0088 

PET::GLZSM::Large zone high gray emphasis/PIK3CA 61.9 64.71 0.6758 0.0153 

PET::NGTDM::Complexity/PIK3CA 61.9 70.59 0.6716 0.0179 

PET::GLCM::Sum average 47.62 73.53 0.6604 0.0269 

HRAS     

PET::Histogram::Skewness 62.22 70.45 0.6934 0.0017 

PET+CT::Fusion::Normalized mutual information 76.09 62.79 0.6871 0.0024 

PET::Histogram::Kurtosis 71.11 63.64 0.6773 0.004 

PET::Histogram::Energy 75.56 63.64 0.6672 0.0066 

CT::Intensity::Maximum 75.56 61.36 0.6601 0.0093 

CT::Histogram::Energy 51.11 70.45 0.6566 0.011 

CT::NGTDM::Texture strength 64.44 63.64 0.654 0.0123 

PET::GLZSM::Small zone size emphasis 55.56 70.45 0.6513 0.014 

CT::NGTDM::Coarseness 46.67 75 0.6303 0.0342 

CT::GLZSM::Large zone low gray Emphasis 46.67 72.73 0.6253 0.0418 

PET::GLZSM::Large zone size emphasis 57.78 70.45 0.6217 0.048 

PET+CT::Fusion::Correlation 80 45.45 0.6212 0.0489 

KDR     

PET::NGTDM::Busyness 98.65 98.65 0.9971 <0.0001 
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CT::GLCM::Angular second moment 75.68 66.67 0.6937 0.0185 

PET+CT::Fusion::Inverse difference 60.81 73.33 0.6928 0.019 

PET::GLCM::Cluster shade 63.51 73.33 0.6829 0.0261 

Radiomic Feature/Mutation Sensitivity % Specificity % AUC P-Value 

CT::GLCM::Entropy 50 66.67 0.682 0.0268 

PET+CT::Fusion::Inverse difference moment 59.46 80 0.6739 0.0344 

RET     

CT::Histogram::Kurtosis 83.78 67.31 0.7484 <0.0001 

PET::NGTDM::Contrast 62.16 65.38 0.6996 0.0014 

PET::GLCM::Dissimilarity 70.27 59.62 0.6959 0.0017 

PET+CT::Fusion::Inverse difference 83.78 50 0.6939 0.0019 

PET::GLCM::Inverse difference moment 78.38 50 0.6887 0.0025 

CT::GLCM::Sum variance 86.49 53.85 0.6871 0.0027 

PET::GLCM::Difference entropy 54.05 69.23 0.672 0.0059 

PET::GLCM::Sum average 67.57 59.62 0.6679 0.0072 

PET::GLCM::Sum of squares variance 70.27 53.85 0.6653 0.0081 

CT::GLCM::Cluster prominence 81.08 50 0.6635 0.0088 

PET::GLCM::Cluster shade 75.68 50 0.6538 0.0137 

PET::GLZSM::High gray level zone emphasis 83.78 48.08 0.6585 0.0111 

CT::GLCM::Entropy 72.97 55.77 0.6507 0.0158 

PET::Histogram::Variance 78.38 48.08 0.6497 0.0165 

PET::Histogram::Mean 65.79 60.78 0.6434 0.0211 

PET::Intensity::Maximum 70.27 59.62 0.6403 0.0246 

PET::Intensity::Mean 56.76 65.38 0.6273 0.0414 

CT::Histogram::Mean 70.27 67.31 0.6273 0.0414 

CT::Intensity::Sum 72.97 50 0.6253 0.0448 

ERBB4     

PET+CT::Fusion::Inverse difference 72 56.25 0.6513 0.0272 

CT::NGTDM::Coarseness 44 68.75 0.6394 0.0418 

SKT11     

PET::GLCM::Dissimilarity 84.85 67.86 0.8095 <0.0001 

PET::NGTDM::Contrast 84.85 64.29 0.7949 <0.0001 

PET::GLCM::Cluster shade 78.79 60.71 0.7803 <0.0001 

PET::GLCM::Inverse difference moment 60.61 87.5 0.7727 <0.0001 

PET::GLCM::Difference entropy 60.61 83.93 0.7749 <0.0001 

PET::GLZSM::Large zone high gray emphasis 60.61 80.36 0.7597 <0.0001 

PET::NGTDM::Texture strength 62.5 80.7 0.7516 <0.0001 

PET::Histogram::Entropy 63.64 80.36 0.7348 0.0002 

PET::NGTDM::Complexity 60.61 80.36 0.7348 0.0002 

CT::Histogram::Entropy 69.7 60.71 0.6851 0.0037 

PET::GLCM::Sum entropy 72.73 60.71 0.678 0.0052 

CT::GLCM::Sum variance 60.61 66.07 0.6721 0.0069 

PET::GLZSM::Large zone size emphasis 50 75 0.6629 0.0113 

PET::GLZSM::Zone size percentage 72.73 53.57 0.648 0.0202 

PET::Shape::Compactness 81.82 41.07 0.6472 0.0209 

CT::GLCM::Cluster prominence 72.73 48.21 0.6488 0.0195 

PET+CT::Fusion::Contrast 60.61 66.07 0.625 0.0497 
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4.5 Decision Tree predictive Model: Similar to a recently pub- 

lished study, we tested for a predictive model according to our re- 

sults (Ceriani, 2021). In this decision tree model for each mutation 

the two correlated features with the highest AUC were determined. 

Using ROC analysis with Youden index we determined thresholds 

for each of the features and categorized lesions according to this 

value as 0 (lesion is not beyond the score with regard to gene mu- 

tation) and 1 (lesion is beyond the score with regard to gene mu- 

tation). Patients were then divided into 3 groups according to the 

scoring: Score zero (both features with value 0), score one (one 

of the two features with value 1) and score 2 (both features with 

value 1). For EGFR mutation ‘CT::Intensity::Mean’ and ‘CT::His- 

togram::Mean’ were considered for the predictive model and the 

prevalence of mutations increased from 0% (0/5) for score 0 to 

84% (21/25) in score 1 and 91% (21/23) in score 2. FGFR mu- 

tation was considered with ‘PET+CT::Fusion::Inverse difference’ 

and ‘CT::Histogram::Entropy’. The prevalence of mutations in- 

creased from 5% to 50% and 90% for score zero, one and two 

respectively. For HRAS mutation combination of ‘PET::Histo- 

gram::Skewness’ and ‘PET+CT::Fusion::Normalized mutual in- 

formation’ , resulted the increasing prevalence of mutation from 

8% to 83% and 87% (Score zero, one and two respectively). In 

RET mutation the concordance of ‘PET::NGTDM::Contrast’ and 

‘CT::Histogram::Kurtosis’, resulted a prevalence of mutation from 

0% in group with score zero to 78% for score 1 and 83% for score 

2. For PIK3CA two PET related parameters ‘PET::GLCM::Clus- 

ter shade’ and ‘PET::GLCM::Dissimilarity’ had the best AUC and 

prevalence of mutation increased from 12% to 46% and 62% for 

score zero, one and two respectively. Finally SKT11 mutation also 

considered with two PET parameters ‘PET::GLCM::Dissimilarity’ 

and ‘PET::NGTDM::Contrast’. The prevalence of mutation in- 

creased from 17% in the group with score zero to 53% in group 

with score 1 and 66% in group with score 2. 

5. Discussion 

In this pilot study, we prospectively aimed to correlate liquid biop- 

sies with radiomics. Radiomic features are capable of representing 

tumor phenotypes - especially PET-based radiomics- because of 

the underlying mechanism of action. (Grossmann, 2017) (Xiong, 

2018). Such an approach can support progress in personalized 

medicine as a feasible and non-invasive tumor characterization. 

Another important possibility of this strategy would be the capa- 

bility for better clarification of tumor heterogeneity which might 

lead to a better decision making in targeted tumor therapy. (Lian, 

2016) We choose lung cancer for this first pilot study, because it 

is still the most common cause of cancer death worldwide (Sung, 

2012). The use of liquid biopsy in clinical practice was suggested 

for EGFR analysis in NSCLCs even since 2004 (Tu, 2016). Con- 

sequently, more data are available –especially regarding EGFR- 

for comparison and interpretation (Wang Z. , 2018) (Deng, 2020). 

In a recently published study genome profiling of cfDNA, which 

was done for colon cancer patients (similar to our study, patients 

were in different stage of disease), they had a high concordance 

with tissue biopsy results, when the time between obtaining the 

two biopsies was less than 30 days (Lan, 2021) (Cervena, 2021). 

In our study we observed the same results for EGFR mutation: 

In patients which liquid biopsy was done parallel or in short time 

duration after/before tissue biopsy (7 patients), the EGFR mutation 

results was similar to tissue biopsy. 

Our study shows a significant correlation between tumor volume 

and TLG measured with PET/CT and mortality of lung cancer 

which is in concordance with similar study on cfDNA in lung and 

breast cancer patients. (Bredno, 2021) Few studies tried to find 

the concordance of circulation DNA/RNA with tissue biopsy and / 

or its correlation with radiomic features (Veldore, 2018) (Guibert, 

2020): Dama et al reported several studies which used mi-RNA as 

a diagnostic biomarker in circulating blood of lung cancer patients 

and tried to correlate it with CT features. They reported a sensitiv- 

ity range between 75-78%. Looking into the literature it is evident, 

that almost all mutations show higher prevalence in liquid biopsy 

than tissue biopsy; as an example the prevalence of EGFR mutation 

in tissue biopsies of lung cancer patients ranged between 20%46% 

(Gejman, 2019) (Aye, 2021) (Gahr, 2013) (YL, 2016), whereas 

in liquid biopsies the prevalence ranged between 64%-85% (Sin- 

gh, 2017). In our study population, 72% of patients had EGFR 

mutation which is in concordance with other studies (Su, 2018). 

The reason of this higher prevalence in cfDNA is probably due to 

the higher capability of mutated cells for invasion and reaching 

into the blood circulation compared to non-mutated ones, which 

is one important advantage of cfDNA for detection of different 

tumor sub-populations. Furthermore, biopsy is prone to sampling 

errors due to spatial and temporal tumor heterogeneity. In terms 

of mutation prediction, EGFR mutation could be predicted mainly 

with CT-related radiomic-features rather than PET whereas FGFR 

and SKT-11 could be predicted with the highest AUC P-Values 

with PET- related features (Figure 6). Correlation studies of PET/ 

CT radiomic and EGFR mutation were mainly done with tissue 

biopsies; in many of them it has been shown that EGFR mutation 

is mostly correlated with shape, compactness and overall physical 

characteristics of the tumor/metastasis. (Yip, 2017) (Zhang, 2020) 

Most studies in cfDNA of lung cancer patients focused on one – 

for example only 

EGFR- or maximally two or three important mutations (EGFR and 

KRAS or FGFR and ALK) as the most common well-known muta- 

tions in lung cancer - and their sensitivity and specificity on early 

diagnosis, estimation of prognosis, therapy response or recurrence 

of NSCLC (Filipska, 2021). One strength of our study is that we 

used a panel of genome assays including 50 important oncogenes 

that can provide an overview of all activated oncogenic pathways 

which may be reflected by radiomics. In our study due to the low 

percentage of mutated cases we could not check the correlation of 
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radiomic features with KRAS. One study using cfDNA reports its 

prevalence up to 50%, whereas others showed lower rates (Bol- 

drin, 2020) (Zulato, 2020). On the other hand, there are studies, 

which pronounced the importance of cfDNA extraction methods, 

and /or mutation detection packages, which significantly lead to 

increasing false negativity rather than false positivity in mutation 

tests -specially for KRAS- (Garzón, 2016). Instead of KRAS, we 

have got a profound correlation of Radiomics with mutated HRAS 

patients as another important oncogene from RAS family. 

In our study KDR (KDR also is known as VEGFR 2), FGFR, 

PIK3CA and especially RET showed a high percentage of mu- 

tation. They are all together important members of the TK-path- 

way, which is the most important therapy target in NSCLC pa- 

tients . (Liu, 2017) (Yamaoka, 2018) PIK3CA is reported to be 

highly mutated in both SCC and ADC tissue samples -but more in 

SCC- (Campbell, 2016) which is in concordance which our liquid 

biopsy results. In a recently published retrospective study which 

combined FGFR mutation detection in cfDNA and tissue biopsies 

the prevalence of FGFR mutation in different types of lung cancer 

patients was about 2% which was significantly higher in SCC pa- 

tients. (Zhou, 2021) . In this study more than half samples – wheth- 

er cfDNA or tissue – which were positive for FGFR mutation have 

had also PIK3CA or PIK3R2 mutation in cfDNA samples showing 

the activation of TK pathway in these patients. In our study we 

observed FGFR mutation in about 10 % of patients and PIK3CA 

mutation in about 38% of patients (Figure 2). Both had more cor- 

relations with PET features rather than CT and more than half of 

correlated PET features were similar together. (Table 2) 

VEGFR-2 (KDR) and RET-targeting drugs are novel anti-tumor 

therapies and are important for angiogenesis and invasion of the 

tumor. (Yan Zhou, 2015) In one study on ADC patients with tis- 

sue biopsy assay, EGFR is considered as a driver mutation which 

occurred primarily and in high frequency but other mutations -like 

KDR- are branching private mutations which occur later on and 

in individuals with highly heterogenous ADC. (Pelosi, 2016). In 

a review the prevalence of RET mutation ,as a tumor diver gene, 

was about 1.2%-6% and more common in ADC. (R, 2013). RET 

mutated lung tumors were significantly more invasive and less dif- 

ferentiated in comparison to EGFR or ALK mutated ones. (Josh- 

ua D. Campbell, 2016) (Qiu, 2020) (Li, 2019) This may explain 

the higher prevalence of its mutation in cfDNA than reported in 

tissue biopsies: RET and VEGF mutated cells are more invasive 

and reach easily to the circulation. Interestingly, RET, KDR and 

FGFR are significantly correlated with “PET CT fusion inverse 

difference” which is one of the representative features of tumor 

heterogeneity in FDG uptake (PET) as well as HU Unit (CT). Ac- 

cording to (Figure 3) the more heterogenic the tumor uptake or 

tumor structure is, the higher is the likelihood of mutations in RET, 

KDR and FGFR. 

The percentage of mutations in other important genes in lung 

cancer -especially tyrosine kinase pathway- like SKT11 was, as 

expected, higher than reported in tissue biopsy studies (Figure 2) 

(Facchinetti, 2017). In the published cfDNA mutation assays we 

didn’t find any available study, which investigated mutations of 

SKT11 in lung cancer patients. SKT11, FGFR & PIK3CA togeth- 

er with RET mutation had the highest connection to each other 

in terms of correlation with different features. Unlike the tumor 

driver mutations, SKT11 as a tumor suppressor gene, shows to 

be more mutated when tumors are more homogenous. (Figure5 

A, B and C) This points towards an increasing tumor heterogene- 

ity by an activation of the TKpathway via EGFR or other driver 

oncogenes rather than mutations of a tumor suppressor gene. An 

important limitation of tissue biopsy is its incapacitation for eval- 

uation and clarifying of tumor heterogenicity. Most malignancies, 

especially NSCLC, present as a heterogenetic entity with multiple 

sub–populations. Characterization of this sub-population is essen- 

tial in personalized medicine. (Voigt, 2020) Combination of liquid 

biopsy and radiomics has the potential to connect the phenotypical 

heterogeneity to the genome heterogeneity of tumors and to im- 

prove tumor characterization. (Jr, 2018). In the aspect of corre- 

lation with the radiomics, in our study 66.7% (30 from 45) of all 

correlated radiomic-features were PET –related features or fusion 

PET/CT related ones, which points towards that mutations more 

often affect tumor metabolism rather than morphological features. 

Recently deep learning and machine learning systems emerged for 

the prediction of mutations based on radiomics in different tumors, 

which were shown to provide highly performant predictive mod- 

els (Le, 2021). Because of a low sample size, it was not useful to 

test machine-learning systems; nevertheless, our AUC results are 

completely comparable to those studies, which employed ML for 

the detection of EGFR status. We had AUC > 0.7 with 95% CI 

(confidence interval) for all correlated features, which is compa- 

rable to Wang et al. (Wang S. , 2019) (Yin, 2021). So far, a rather 

comprehensive gene mutation assay on cfDNA (50 genes) wasn’t 

performed in lung cancer patients in combination with F-18 FDG 

PET-CT radiomics. Therefore, interpretation of the sensitivity of 

our cfDNA mutation assay is not possible due to a lack of com- 

parable studies. Our findings lay the basis for further evaluations 

and for a further improvement of this strategy. Despite our low 

sample size, multi-parametric radiomic based models seem to be 

a useful approach that can be used to estimate the activation of 

special cascades in the tumor cells. Our next ongoing step is to 

extend our sample size not only in lung cancer patients but also in 

other solid tumors and using possible machine learning workflows 

for better characterization of activated cascades. Parallel it is im- 

portant to modify extraction methods for increasing the sensitivity 

of mutation results. 
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